Skip to main content
Log in

Genetic and biochemical characterization of distinct transport systems for uracil, uridine and cytidine in Salmonella typhimurium

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

  1. 1.

    Uridine transport has been examined in wild type and mutant strains of Salmonella typhimurium. The nucleoside-specific system requires a functional uridine kinase (udk +) as well as a periplasmic binding protein. This transport system is specific for uridine and cytidine and does not appear to contribute significantly to the uptake of deoxythymidine nor the purine nucleosides. The transport of uridine is characterized by hyperbolic kinetics with an apparent K m for uridine of 4.3±0.4 μM.

  2. 2.

    Uracil is transported by a completely different system which requires a functional uracil phosphoribosyl transferase (upp +) and possesses a periplasmic binding protein.

  3. 3.

    Bacterial strains lacking uridine kinase (udk -) do not transport uridine, but do transport uracil. Conversely, strains lacking uracil phosphoribosyl transferase (upp -), transport uridine, but do not transport uracil. Thus, uridine is transported intact rather than cleaved to uracil plus the ribose moiety and subsequently transported. Furthermore, very little uridine phosphorylase (uridine+Pi→uracil+ribose-1-phosphate) is recovered in periplasmic shock fluids of S. typhimurium.

  4. 4.

    Periplasmic binding proteins were indentified for both uridine and uracil. Furthermore, the uridine binding protein is separate from uridine kinase. Thus, transport of uridine and uracil require the participation of a periplasmic binding protein and the appropriate “salvage” enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrechtsen, H., Hammer-Jespersen, K., Munch-Petersen, A., Fül, N.: Multiple regulation of nucleoside catabolizing enzymes: Effects of dipolar dra mutation of the deo enzymes. Mol. Gen. Genet. 146, 139–145 (1976)

    Google Scholar 

  • Beck, C. F., Ingraham, J.L., Neuhard, J., Thomassen, E.: Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J. Bacteriol. 110, 219–228 (1972)

    Google Scholar 

  • Fast, R., Sköld, O.: Biochemical mechanism of uracil uptake regulation in Escherichia coli B. Allosteric effects on uracil phosphoribosyl transferase under stringent conditions. J. Biol. Chem. 252, 7620–7624 (1977)

    Google Scholar 

  • Flaks, J.G.: Nucleotide synthesis from 5-phosphoribosylpyrophosphate. Methods Enzymol. 6, 152–155 (1963)

    Google Scholar 

  • Furlong, C.E., Morris, R.G., Kandrach, M., Rosen, B.P.: A multichamber equilibrium dialysis apparatus. Anal. Biochem. 47, 514–526 (1972).

    Google Scholar 

  • Grenson, M.: The utilization of exogenous pyrimidines and the recycling of uridine-5-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur. J. Biochem. 11, 249–260 (1969)

    Google Scholar 

  • Gutnick, D., Calvo, J.M., Klopotowski, T., Ames, B.N.: Compounds which serve as the sole source of carbon of nitrogen for Salmonella typhimurium LT-2. J. Bacteriol. 100, 215–219 (1969)

    Google Scholar 

  • Hoare, D.G.: A curve-fitting procedure utilizing a small computer for equations containing three or four unknown constants. Anal. Biochem. 46, 604–617 (1972)

    Google Scholar 

  • Hochstadt, J.: The role of the membrane in the utilization of nucleic acid precursors. CRC Crit. Rev. Biochem. 2, 259–309 (1974)

    Google Scholar 

  • Hochstadt-Ozer, J.: The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes. J. Biol. Chem. 247, 2419–2426 (1972)

    Google Scholar 

  • Hochstadt-Ozer, J., Stadtman, E.R.: The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyl-transferase from Escherichia coli K12 and control of activity by nucleotides. J. Biol. Chem. 246, 5294–5303 (1971a)

    Google Scholar 

  • Hochstadt-Ozer, J., Stadtman, E.R.: The regulation of purine utilization in bacteria. II. Adenine phosphoribosyl transferase in isolated membrane preparations and its role in transport of adenine across the membrane. J. Biol. Chem. 246, 5304–5311 (1971b)

    Google Scholar 

  • Hochstadt-Ozer, J., Stadtman, E.R.: The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyl transferases in the uptake of adenine and other nucleic acid precursors by intact resting cells. J. Biol. Chem. 246, 5312–5320 (1971c)

    Google Scholar 

  • Krajewska, E., Shugar, D.: Pyrimidine nucleoside analogues as inducers of pyrimidine nucleoside catabolizing enzymes in Salmonella typhimurium. Mol. Biol. Rep. 2, 295–301 (1975)

    Google Scholar 

  • Leung, K.K., Visser, D.W.: Uridine and cytidine transport in Escherichia coli B and transport-deficient mutants. J. Biol. Chem. 252, 2492–2497 (1977)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Munch-Petersen, A., Mygind, B.: Nucleoside transport systems in Escherichia coli K12: specificity and regulation. J. Cell. Physiol 89, 551–560 (1976)

    Google Scholar 

  • Nygaard, P.: Nucleoside-catabolizing enzymes in Salmonella typhimurium. Induction by ribonucleosides. Eur. J. Biochem. 36, 267–272 (1973)

    Google Scholar 

  • O'Donovan, G.A., Neuhard, J.: Pyrimidine metabolism in micro-organisms. Bacteriol. Rev. 34, 278–343 (1970)

    Google Scholar 

  • Rader, R.L., Hochstadt, J.: Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylases in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles. J. Bacteriol. 128, 290–301 (1976)

    Google Scholar 

  • Roy-Burman, S., Visser, D.W.: Transport of purine and deoxyadenosine in Escherichia coli. J. Biol. Chem. 250, 9270–9275 (1975)

    Google Scholar 

  • Von Dippe, P.J., Roy-Berman, S., Visser, B.W.: Transport of uridine in Escherichia coli B and a showdomycin-resistant mutant. Biochim. Biophys. Acta 381, 105–112 (1973)

    Google Scholar 

  • Williams, J.C., Kizaki, H., Weiss, E., Weber, G.: Improved radio-isotopic assay for cytidine 5′-triphosphate synthetase (EC 6.3.4.2). Anal. Biochem. 91, 46–59 (1978)

    Google Scholar 

  • Williams, J.C., O'Donovan, G.A.: Repression of enzyme synthesis of the pyrimidine pathway in Salmonella typhimurium. J. Bacteriol. 115, 1071–1076 (1973)

    Google Scholar 

  • Willis, R.C., Morris, R.G., Cerakoglu, C., Schellenberg, G.D., Gerber, N.H., Furlong, C.E.: Preparation of the periplasmic binding proteins from Salmonella typhimurium and Escherichia coli. Arch. Biochem. Biophys. 161, 64–75 (1974)

    Google Scholar 

  • Yagil, E., Beacham, I.R.: Uptake of adenosine 5′-monophosphate by Escherichia coli. J. Bacteriol. 121, 401–405 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. O'Donovan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.C., Lee, C.E. & Wild, J.R. Genetic and biochemical characterization of distinct transport systems for uracil, uridine and cytidine in Salmonella typhimurium . Molec. Gen. Genet. 178, 121–130 (1980). https://doi.org/10.1007/BF00267220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267220

Keywords

Navigation