Skip to main content
Log in

Restriction in vivo

V. Induction of SOS functions in Escherichia coli by restricted T4 phage DNA, and alleviation of restriction by SOS functions

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Degradation products of restricted T4 DNA induced filamentation, mutagenesis, and to a lesser extent, synthesis of recA protein in wild type cells but not in recA, lexA or recBC mutants of Escherichia coli. We conclude that the structural damage to the DNA caused by restriction cleavage and exonuclease V degradation can induce SOS functions. Degradation of restricted nonglucosylated T4 DNA by exonuclease V delayed cell division and induced filament formation and mutagenesis in lexA + but not in lexA - cells. Delay of cell division was also dependent upon recA and recBC funtions. Such degradation of DNA also dramatically increased mutagenesis in tif - Sfi- cells at 42°C. The synthesis of recA protein continued in the restricting host after infection by the nonglucosylated T4 phage, but enhanced synthesis is not induced to the extent seen in SOS induced tif - cells grown at 42°. We also found that restriction of nonglucosylated T4 was alleviated in UV irradiated cells. The UV induced alleviation of rgl and r K restriction depended upon post irradiation protein synthesis and was not observed in recA, lexA or recBC mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.H.: Bacteriophages. New York: John Wiley 1959

    Google Scholar 

  • Barbour, S., Clark, A.J.: Biochemical and genetic studies of recombination proficiency in Eschrrichia coli. I. Enzymatic activity associated with recB + and recC + genes. Proc. Natl. Acad. Sci. U.S.A. 65, 955–961 (1970)

    Google Scholar 

  • Bertani, G., Weigle, J.J.: Host controlled variation in bacterial viruses. J. Bacteriol. 65, 113–121 (1953)

    Google Scholar 

  • Bridges, B.A., Rothwell, M.A., Green, M.H.L.: Repair process and dose response curves in ultraviolet mutagenesis of bacteria. An. Acad. Brasil. Ci. 45 Suppl, 203–208 (1973)

    Google Scholar 

  • Castellazzi, M., George, J., Buttin, G.: Prophage induction and cell division in Escherichia coli. II. Linked (recA, zab) and unlinked (lex) suppressors of tif-1 mediated induction and filamentation. Mol. Gen. Genet. 119, 153–174 (1972)

    Google Scholar 

  • Day, R.S.: UV-induced alleviation of K specific restriction of bacteriophage λ. J. Virol. 21, 1249–1251 (1977)

    Google Scholar 

  • Dharmalingham, K., Goldberg, E.B.: Mechanism localization and control of restriction cleavage of phage T4 and λ chromosomes. Nature 260, 406–410 (1976)

    Google Scholar 

  • Dharmalingam, K., Goldberg, E.B.: Restriction in vivo. III. General effects of glucosylation and restriction on phage T4 gene expression and replication. Virology 96, 393–403 (1979)

    Google Scholar 

  • Doubleday, O.P., Green, M.H.L., Bridges, B.A.: Spontaneous and ultraviolet-induced mutations in Escherichia coli: Interaction between plasmid and tif-1 mutator effects. J. Gen. Microbiol. 101, 163–166 (1977)

    Google Scholar 

  • Emmerson, P.T., West, S.C.: Identification of protein-X of E. coli as the recA + /tif + gene product. Mol. Gen. Genet. 155, 77–85 (1977)

    Google Scholar 

  • George, J., Castellazzi, M., Buttin, G.: Prophage induction and cell division in E. coli. III. Mutations sfiA and sfiB restore division in tif and lon strains and permit the expression of mutator properties of tif. Mol. Gen. Genet. 140, 309–332 (1975)

    Google Scholar 

  • George, J., Devoret, R., Radman, M.: Indirect ultraviolet reactivation of phage λ. Proc. Natl. Acad. Sci. U.S.A. 71, 144–147 (1974)

    Google Scholar 

  • Georgopoulos, C.P.: Isolation and preliminary characterization of T4 mutants with non-glucosylated DNA. Biochem. Biophys. Res. Commun. 28, 179–184 (1967)

    Google Scholar 

  • Green, M.H.L.: Appendix in Bridges, B.A.: Recent advances in basic mutation research. Mutat. Res. 44, 149–164 (1977)

    Google Scholar 

  • Gudas, L.J., Pardee, A.B.: Model for the regulation of Escherichia coli DNA repair functions. Proc. Natl. Acad. Sci. U.S.A. 72, 2330–2334 (1975)

    Google Scholar 

  • Gudas, L.J., Pardee, A.B.: DNA synthesis inhibition and the induction of protein-X in Escherichia coli. J. Mol. Biol. 101, 459–477 (1976)

    Google Scholar 

  • Haberman, A., Heywood, M., Meselson, M.: DNA modification methylase activity of Escherichia coli restriction endonuclease K and P. Proc. Natl. Acad. Sci. U.S.A. 69, 3138–3141 (1972)

    Google Scholar 

  • Kennel, D.: Inhibition of host protein synthesis during infection of Escherichia coli B by bacteriophage T4. I. Continued synthesis of host ribonucleic acid. J. Virol. 2, 1261–1271 (1968)

    Google Scholar 

  • Lehmann, A.R., Bridges, B.A.: DNA repair. In: Essays in biochemistry (P.N. Campbell and W.N. Aldridge, eds.), Vol. 13, pp. 71–119. New York: Academic Press, Inc. 1977

    Google Scholar 

  • Luria, S.E.: Host-induced modifications of viruses. Cold Spring Harbor Symp. Quant. Biol. 18, 237–244 (1953)

    Google Scholar 

  • Malamy, M.H., Fiandt, M., Szybalsky, W.: Electron microscopy of polar insertions in the lac operon of Escherichia coli. Mol. Gen. Genet. 119, 207–222 (1972)

    Google Scholar 

  • Marsden, H.S., Pollard, E.C., Ginoza, W., Randal, E.P.: Involvement of recA and exr genes in the in vivo inhibition of recBC nuclease. J. Bacteriol. 118, 465–470 (1974)

    Google Scholar 

  • McGarva, D., Doubleday, O.P., Lehmann, A.R., Bridges, B.A.: Assays for the fidelity of DNA polymerase in cell free extracts of Escherichia coli are complicated by contaminating nucleotide triphosphatases. Biochem. Biophys. Acta 563:356–364 (1979)

    Google Scholar 

  • Meyn, S., Rossman, T., Troll, W.: A protease inhibitor blocks SOS functions in Escherichia coli. Antipain prevents λ repressor inactivation ultraviolet mutagenesis and filamentous growth. Proc. Natl. Acad. Sci. U.S.A. 74, 1152–1156 (1977)

    Google Scholar 

  • Oishi, M., Smith, C.L.: Inactivation of phage repressor in a permeable cell system: Role of recBC DNAse in induction. Proc. Natl. Acad. Sci. U.S.A. 75, 3569–3573 (1978)

    Google Scholar 

  • Oliver, D.B., Goldberg, E.B.: Protection of parental T4 DNA from a restriction exonuclease by the product of gene 2. J. Mol. Biol. 116, 877–881 (1977)

    Google Scholar 

  • Pollard, E., Randal, E.P.: Studies on the inducible inhibitor of radiation induced DNA degradation of Escherichia coli. Radiat. Res. 55, 265–279 (1973)

    Google Scholar 

  • Radman, M.: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In: Molecular and evironmental aspects of mutagenesis (L. Prakash, F. Sherman, M.W. Miller and H.W. Taber, eds.), pp. 128–148, Springfield: C.C. Thomas 1974

    Google Scholar 

  • Radman, M., Villani, G., Boiteaux, S., Defais, M., Cailett-Fauquet, P., Spadari, S.: On the mechanism and genetic control of mutagenesis induced by carcinogenic mutagens. In: Origins of human cancer (H.H. Hiatt, J.D. Watson and J.A. Winstin, eds.) (Cold Spring Harbor) Book B 903–922 (1977)

  • Roberts, J., Roberts, C.: Proteolytic cleavage of bacteriophage λ repressor in induction. Proc. Natl. Acad. Sci. U.S.A. 72, 147–151 (1975)

    Google Scholar 

  • Sauerbier, W.: Ultraviolet sensitivity and thymine dimerization in mutants of bacteriophage T4. Biochem. Biophys. Acta 87, 356–358 (1964)

    Google Scholar 

  • Silverstein, J.L., Goldberg, E.B.: T4 DNA injection. II. Protection of entering DNA from host exonuclease V. Virol. 72, 212–233 (1976)

    Google Scholar 

  • Smith, C.L., Oishi, M.: Early events and mechanisms in the induction of bacterial SOS functions: Analysis of the phage repressor inactivation process in vivo. Proc. Natl. Acad. Sci. U.S.A. 75, 1657–1661 (1978)

    Google Scholar 

  • Sussman, R., BenZeev, H.: Proposed mechanism of bacteriophage lambda induction: Acquisition of binding sites for lambda repressor by DNA of the host. Proc. Natl. Acad. Sci. U.S.A. 72, 1973–1976 (1975)

    Google Scholar 

  • Sussman, R., Resnick, J., Calame, K., Baluch, J.: Interaction of bacteriophage λ repressor with non operator DNA containing single-stranded gaps. Proc. Natl. Acad. Sci. U.S.A. 75, 5817–5821 (1978)

    Google Scholar 

  • Villani, G., Boiteux, S., Radman, M.: Mechanism of ultraviolet induced mutagenesis: Extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci. U.S.A. 75, 3037–3041 (1978)

    Google Scholar 

  • Witkin, E.M.: Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B/r: evidence that ultraviolet mutagenesis depends upon an inducible function. Proc. Natl. Acad. Sci. U.S.A. 71, 1930–1934 (1974)

    Google Scholar 

  • Witkin, E.M.: Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40, 869–907 (1976)

    Google Scholar 

  • Witkin, E.M.: Targetted and untargetted mutagenesis by various inducers of SOS functions in E. coli. Cold Spring Harbor Symp. Quant. Biol. 43, 881–886 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B.A. Bridges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dharmalingam, K., Goldberg, E.B. Restriction in vivo. Molec. Gen. Genet. 178, 51–58 (1980). https://doi.org/10.1007/BF00267212

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267212

Keywords

Navigation