Skip to main content
Log in

DNA-dependent in vitro synthesis of enzymes of the galactose operon of Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Two active enzymes of the galactose operon of Escherichia coli, uridyl transferase and galactokinase have been synthesized with high yields in a DNA dependent system for protein synthesis. The unspecific blank values amount to less than two percent of the rate obtained under optimal conditions and permit the accurate determination of even a small fraction of the maximum synthesis rate. Therefore this system provides a sensitive assay for the biological activity of DNA that contains the intact galactose operon of Escherichia coli.

The synthesis of these galactose enzymes is to a high extent dependent on the presence of cyclic adenosine-3′:5′-monophosphate.

D-fucose, known as an inducer of the galactose operon in vivo, stimulates the synthesis of galactokinase, indicating that the repressor of the galactose operon in active under these conditions. This stimulation is not observed, if the bacterial extract is prepared from a strain defective for the galactose repressor or if the DNA carries an operator constitutive mutation in the galactose operon. Therefore the stimulation by D-fucose is true derepression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhya, S. L., Shapiro, J. A.: The galactose operon of E. coli Kl2. I. Structural and pleiotropic mutations of the operon. Genetics 62, 231–247 (1969).

    Google Scholar 

  • Burgi, E., Hershey, A. D.: Sedimentation rate as a measure of molecular weight of DNA. Biophys. J. 3, 309 (1963).

    Google Scholar 

  • Buttin, G.: Mechanismes régulateurs dans la biosynthèse des enzymes du métabolisme du galactose chez Escherichia coli Kl2. I. La biosynthèse induite de la galactokinase et l'induction simultanée de la séquence enzymatique. J. molec. Biol. 7, 164–182 (1963a). II. Le déterminisme génétique de la régulation. J. molec. Biol. 7, 183–205 (1963b).

    Google Scholar 

  • Chambers, D. A., Zubay, G.: The stimulatory effect of cyclic adenosine 3′,5′-monophosphate on DNA directed synthesis of β-galactosidase in a cell-free system. Proc. nat. Acad. Sci. (Wash.) 63, 118–122 (1969).

    Google Scholar 

  • Crombrugghe, B. de, Chen, B., Gottesman, M., Pastan, I., Varmus, H. E., Emmer, M., Perlman, R. L.: Regulation of lac mRNS synthesis in a soluble cell-free system. Nature New Biology (Lond.) 230, 37–40 (1971).

    Google Scholar 

  • Eron, L., Arditti, R., Zubay, G., Connaway, S., Beckwith, J. R.: An adenosine 3′:5′-cyclic monophosphate-binding protein that acts on the transcription process. Proc. nat. Acad. Sci. (Wash) 68, 215–218 (1971).

    Google Scholar 

  • Fiethen, L.: Untersuchungen über Oc-Mutanten im Galactose Operon von Escherichia coli. Diss. Universität zu Köln (1969).

  • —, Starlinger, P.: Mutations in the galactose-operator. Molec. Gen. Genetics 108, 322–330 (1970).

    Google Scholar 

  • Germaine, G. R., Rogers, P.: Role of gal repressor depletion in λdg transduction escape synthesis. J. molec. Biol. 47, 121–135 (1970).

    Google Scholar 

  • Gulbinsky, J. S., Cleland, W. W.: Kinetic studies of Escherichia coli galactokinase. Biochemistry 7, 566–575 (1968).

    Google Scholar 

  • Herrlich, P., Schweiger, M.: RNA polymerase synthesis in vitro directed by T7 phage DNA. Molec. Gen. Genetics 110, 31–35 (1971).

    Google Scholar 

  • Jordan, E., Saedler, H.: Polarity of amber mutations and suppressed amber mutations in the galactose operon of E. coli. Molec. Gen. Genetics 100, 283–295 (1967).

    Google Scholar 

  • —, Starlinger, P.: 0° and strong-polar mutations in the gal operon are insertions. Molec. Gen. Genetics 102, 353–363 (1968).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265 (1951).

    Google Scholar 

  • Michaelis, G., Saedler, H., Venkov, P., Starlinger, P.: Two insertions in the galactose operon having different sizes but homologous DNA sequences. Molec. Gen. Genetics 104, 371–377 (1969).

    Google Scholar 

  • Nirenberg, M. W.: Cell-free protein synthesis directed by messenger RNA. In: S. P. Colowick and N. O. Kaplan (editors), Methods in enzymology, vol. 6, p. 17. New York and London: Academic Press 1963.

    Google Scholar 

  • Pfeifer, D., Oellermann, R.: Mapping of gal - mutants by transducing λdg carrying deletions of the gal-region. Molec. Gen. Genetics 99, 248 (1967).

    Google Scholar 

  • Saedler, H., Gullon, A., Fiethen, L., Starlinger, P.: Negative control of the galactose operon in E. coli. Molec. Gen. Genetics 102, 79–88 (1968).

    Google Scholar 

  • Saito, S., Ozutsumi, M., Kurahashi, K.: Galactose-1-phosphate uridylyltransferase of Escherichia coli. II. Further purification and characterization. J. biol. Chem. 242, 2362 (1967).

    Google Scholar 

  • Salser, W., Gesteland, R. F., Bolle, A.: In vitro synthesis of bacteriophage lysozyme. Nature (Lond.) 215, 588 (1967).

    Google Scholar 

  • Schweiger, M., Gold, L. M.: DNA dependent in vitro synthesis of bacteriophage enzymes. Cold Spr. Harb. Symp. quant. Biol. 34, 763–766 (1969).

    Google Scholar 

  • Shapiro, J. A.: The structure of the galactose operon in E. coli Kl2. Ph. D. thesis, University of Cambridge (1967).

  • —: Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. molec. Biol. 40, 93 (1969).

    Google Scholar 

  • —, Adhya, S. L.: The galactose operon of E. coli Kl2. II. A deletion analysis of operon structure and polarity. Genetics 62, 249–264 (1969).

    Google Scholar 

  • Skalka, A., Burgi, E., Hershey, A. D.: Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J. molec. Biol. 34, 1–16 (1968).

    Google Scholar 

  • Wilson, D. B., Hogness, D. S.: Galactokinase and uridine diphosphogalactose 4-epimerase from Escherichia coli. In: E. F. Neufeld and V. Ginsburg (editors), Methods in enzymology, vol. 8, p. 229. New York and London: Academic Press 1966.

    Google Scholar 

  • —: The enzymes of the galactose operon in Escherichia coli. IV. The frequencies of translation of the terminal cistrons in the operon. J. biol. Chem. 244, 2143–2148 (1969).

    Google Scholar 

  • Young, E. T. II.: Cell-free synthesis of bacteriophage T4 glucosyl transferase. J. molec. Biol. 51, 591–604 (1970).

    Google Scholar 

  • Zubay, G., Chambers, D. A.: A DNA-directed cell-free system for β-galactosidase synthesis, characterization of the de novo synthesized enzyme and some aspects of the regulation of synthesis. Cold Spr. Harb. Symp. quant. Biol. 34, 753–761 (1969).

    Google Scholar 

  • Zubay, G., Chambers, D. A., Cheong, L. C.: Cell-free studies on the regulation of the lac operon. In: J. R. Beckwith, and D. Zipser (editors), The lactose operon. Cold Spring Harbor Laboratory (1970).

  • —, Schwartz, D., Beckwith, J.: The mechanism of activation of catabolite-sensitive genes, a positive control system. Proc. nat. Acad. Sci. (Wash.) 66, 104 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetekam, W., Staack, K. & Ehring, R. DNA-dependent in vitro synthesis of enzymes of the galactose operon of Escherichia coli . Molec. Gen. Genet. 112, 14–27 (1971). https://doi.org/10.1007/BF00266928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266928

Keywords

Navigation