Skip to main content
Log in

Isolation and genetic characterization of the nitA mutants of Escherichia coli affecting the termination factor rho

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Taking advantage of the Spi (Sensitivity to P2 interference) phenomenon, bacterial mutants seemingly resistant to phage λsusN7nin5, but sensitive to phage λspi, were isolated from a strain of E. coli K12 carrying no nonsense suppressor and lysogenic for P2. A class of these mutants, designated nitA (N-independent transcription), is described here.

Upon infection of the nitA mutants with a trp transducing phage λsusN7N53ptrp46 which carries the E. coli trpE and D genes in the CIII-att region of the λ genome, formation of anthranilate synthetase (ASase, a complex protein of trp E and D gene products) was clearly demonstrated. In contrast, no ASase formation was observed in the parent nitA +strain under the same conditions. The synthesis is subject to “turn off” control, and is completely repressed by the CI repressor of phage λ. The nitA cells lysogenic for λCI857susN7N53 are killed by thermal induction much more efficiently than the parent cells lysogenic for the same phage. The nitA mutants support the growth of λsusN7N53byp much better than the parent. These results suggest that the nitA mutation permits the early leftward and rightward transcription of the λ genome in the absence of the N gene product.

On the E. coli genetic map, nitA is located between ilv and metE, nearer to ilv. The mutant allele is recessive to the wild-type allele. The present evidence, together with results of biochemical investigations to be reported, suggests that nitA is a gene specifying the transcription termination factor rho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckwith, J.: Restoration of operon activity by suppressor. Biochim. biophys. Acta (Amst.) 76, 162 (1963)

    Google Scholar 

  • Bertani, G.: Lysogeny. Advanc. Virus Res. 5, 151 (1958)

    Google Scholar 

  • Brachet, P., Eisen, H., Rambach, A.: Mutation of coliphage λ affecting the expression of replicative functions O and P. Molec. gen. Genet. 108, 266 (1970)

    Google Scholar 

  • Butler, B., Echols, H.: Regulation of bacteriophage λ development by gene N: properties of a mutation that bypass N control of late protein synthesis. Virology 40, 212 (1970)

    Google Scholar 

  • Calendar, R.: The regulation of phage development. Ann. Rev. Microbiol. 24, 242 (1970)

    Google Scholar 

  • Calendar, R., Lindqvist, B., Sironi, G., Clark, A.J.: Characterization of REP- mutants and their interaction with P2 phage. Virology 40, 72 (1970)

    Google Scholar 

  • Chadwick P., Pirrotta, V., Steinberg, R., Hopkins, N., Ptashne, M.: The λ and 434 phage repressors. Cold Spr. Harb. Symp. quant. Biol. 35, 283 (1970)

    Google Scholar 

  • Cohen, S.N., Chang, A.C.Y.: Genetic expression in bacteriophage λ IV Effects of P2 prophage on λ inhibition of host synthesis and λ gene expression. Virology 46, 397 (1971)

    Google Scholar 

  • Court, D., Sato, K.: Studies of novel transducing variants of lambda: dispensability of genes N and Q Virology 39, 348 (1969)

    Google Scholar 

  • Echols, H.: Developmental pathways for the temperate phage: lysis vs. lysogeny. Ann. Rev. Genet. 6, 157 (1972)

    Google Scholar 

  • Fiandt, M., Hradecna, Z., Lozeron, H.A., Szybalski, W.: Electron micrographic mapping of deletions, insertions, inversions and homologies in the DNAs of coliphages lambda and phi 80. The bacteriophage lambda (A. Hershey, ed.), p. 329. New York: Cold Spring Harbor Laboratory 1971

    Google Scholar 

  • Franklin, N.C.: The N operon of λ: Extent and regulation as observed in fusions to the tryptophan operon of E. coli. The bacteriophage lambda (A. Hershey, ed.), p. 621. New York: Cold Spring Harbor Laboratory 1971

    Google Scholar 

  • Franklin, N.C.: Altered reading of genetic signals fused to the N operon of bacteriophage λ: Genetic evidence for modification of polymerase by the protein product of the N gene. J. molec. Biol. 89, 33 (1974)

    Google Scholar 

  • Friedman, D.I., Jolly, C.T., Mural, R.J.: Interference with the expression of the N gene function of phage λ in a mutant of Escherichia coli Virology 51, 216 (1973)

    Google Scholar 

  • Georgopoulos, C.P.: Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. Proc. nat. Acad. Sci. (Wash.) 68, 2977 (1971)

    Google Scholar 

  • Ghysen, A., Pironio, M.: Relationship between the N function of bacteriophage λ and host RNA polymerase. J. molec. Biol. 65, 259 (1972)

    Google Scholar 

  • Heineman, S.F., Spiegelman, W. G.: Role of the gene N product in phage lambda. Cold Spr. Harb. Symp. quant. Biol. 35, 315 (1970)

    Google Scholar 

  • Herskowitz, I.: Control of gene expression in bacteriophage lambda. Ann. Rev. Genet. 7, 289 (1973)

    Google Scholar 

  • Hiraga, S.: Operator mutants of the tryptophan operon in Escherichia coli. J. molec. Biol. 39, 159 (1969)

    Google Scholar 

  • Inoko, H., Imai, M.: Involvement of some host function of Escherichia coli in the turn off control after infection with phages ϕ80 and λ. Molec. gen. Genet. 129, 49 (1974)

    Google Scholar 

  • Inoko, H., Naito, S., Ito, K., Imai, M.: Regulation of the tryptophan operon of Escherichia coli integrated into the phage ϕ80 genome. Molec. gan. Genet. 129, 37 (1974)

    Google Scholar 

  • Kaiser, D.: Lambda DNA replication. The bacteriophage lambda (A. Hershey, ed.), p. 195. New York:Cold Spring Harbor Laboratory 1971

    Google Scholar 

  • Koga, H., Horiuchi, T.: A new repressor produced by λCIvirCR mutant. Jap. J. Genet. 46, 285 (1971)

    Google Scholar 

  • Kumar, S., Calef, E., Szybalski, W.: Regulation of the transcription of Escherichia coli phage λ by its early genes N and tof. Cold Spr. Harb. Symp. quant. Biol. 35, 331 (1971)

    Google Scholar 

  • Kuwano, M., Schlessinger, D., Morse, D.E.: Loss of dispensable endonuclease activity in relief of polarity by suA. Nature (Lond.) New Biol 231, 214 (1971)

    Google Scholar 

  • Lederberg, J.: Methods in medical research (Comroe, J.H. Jr. ed.), vol. 3, p. 3. Year Book Publishers, Chicago 1950

    Google Scholar 

  • Lennox, E.S.: Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190 (1955)

    Google Scholar 

  • Lieb, M.: λ mutants that persist as plasmids. J. Virol. 6, 218 (1970)

    Google Scholar 

  • Lindahl, G., Sironi, G., Bialy, H., Calendar, R.: Bacteriophage lambda: Abortive infection of bacteria lysogenic for phage P2. Proc. nat. Acad. Sci. (Wash.) 66, 587 (1970)

    Google Scholar 

  • Lowery-Goldhammer, C., Richardson, J.P.: An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. Proc. nat. Acad. Sci. (Wash.) 71, 2003 (1974)

    Google Scholar 

  • Luzzati, D.: Regulation of λ exonuclease synthesis: Role of the N gene product and λ repressor. J. molec. Biol. 49, 515 (1970)

    Google Scholar 

  • Mark, K.: Effect of the N-bypass mutations nin and byp on the rightward transcription in coliphage lambda. Molec. gen. Genet. 124, 291 (1973)

    Google Scholar 

  • Matsubara, K.: Interference in phage growth by a resident plasmid λdv. I. The mode of interference. Virology 58, 713 (1972)

    Google Scholar 

  • Morse, D.E., Primakoff, P.: Relief of polarity in E. coli by “suA”. Nature (Lond.) 226, 28 (1970)

    Google Scholar 

  • Ogawa, T., Tomizawa, J.: Replication of bacteriophage DNA. I. Replication of DNA of lambda phage defective in early functions. J. molec. Biol. 38, 217 (1968)

    Google Scholar 

  • Oppenheim, A., Honigman, A., Oppenheim, A.B.: Interference with phage lambda cro gene function by a colicin-tolerant Escherichia coli mutan. Virology 61, 1 (1974)

    Google Scholar 

  • Pereira da Silva, L.H., Eisen, H.A., Jacob, F.: Sur la réplication du bactériophage λ. C.R.Acad.Sci. (Paris) 266, 926 (1968)

    Google Scholar 

  • Pereira da Silva, L.H., Jacob, F.: Erude génétique d'une mutation modifiant la sensibilité à l'immunité chez le bacteriophage lambda. Ann. Inst. Pasteur 115, 145 (1968)

    Google Scholar 

  • Pero, J.: Location of the phage λ gene responsible for turning off λ-exonuclease synthesis. Virology 40, 65 (1970)

    Google Scholar 

  • Pero, J.: Deletion mapping of the site of action of the tof gene product. The bacteriophage lambda (A. Hershey, ed.), p. 599. New York: Cold Spring Harbor Laboratory 1971

    Google Scholar 

  • Portier, M.M., Marcaud, L., Cohen, A., Gros, F.: Mechanism of transcription of the N operon of bacteriophage lambda. Molec. gen. Genet. 17, 72 (1972)

    Google Scholar 

  • Roberts, J.W.: Termination factor for RNA synthesis. Nature (Lond.) 224, 1168 (1969)

    Google Scholar 

  • Roberts, J.W.: The ϱ factor: Termination and antitermination in λ. Cold Sprl Harb. Symp. quqnt. Biol. 35, 121 (1970)

    Google Scholar 

  • Signer, E.R.: Plasmid formation: A new mode of lysogeny by bacteriophage λ. Nature (Lond.) 223, 158 (1969)

    Google Scholar 

  • Sly, W.S., Eisen, H.A., Siminovitch, L.: Host survival following infection with or induction of bacteriophage lambda mutants. Virology 34, 112 (1968)

    Google Scholar 

  • Sly, W.S., Rabideau, K., Kolber, A.: The mechanisms of lambda virulence II. Regulatory mutations in classical virulence. The bacteriophage lambda (A. Hershey, ed.), p. 575. New York: Cold Spring Harbor Laboratory 1971

    Google Scholar 

  • Steinberg, R.A., Ptashne, M.: In vitro repression of RNA synthesis by purified λ phage repressor. Nature (Lond.) New Biol. 230, 76 (1971)

    Google Scholar 

  • Szybalski, W., Bøvre, K., Fiandt, M., Hayes, S., Hradecna, Z., Kumar, S., Lozeron, H.A., Nijkamp, H.J., Stevens, W.F.: Transcriptional units and their controls in Escherichia coli phage λ: Operons and scriptons. Cold Spr. Harb. Symp. quant. Biol. 35, 341 (1970)

    Google Scholar 

  • Taylor, A.L., Trotter, C.D.: Linkage map of Escherichia coli K12. Bact. Rev. 36, 504 (1972)

    Google Scholar 

  • Vogel, H.J., Bonner, D.M.: Acetylornithinase of Escherichia coli: Partial purification and some properties. J. biol. Chem. 218, 97 (1956)

    Google Scholar 

  • Yamamoto, K., Alberts, B.M., Benzinger, R., Lawhorne, L., Treiber, G.: Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40, 734 (1970)

    Google Scholar 

  • Yokota, T., Gots, J.S.: Requirement of adenosine 3′5′-cyclic monophosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J. Bact. 103, 513 (1970)

    Google Scholar 

  • Zissler, J., Signer, E., Schaefer, F.: The role of recombination in growth of bacteriophage lambda II. Inhibition of growth by prophage P2. The bacteriophage lambda (A. Hershey, ed.), p. 469. New York: Cold Spring Harbor Laboratory 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Bertani

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoko, H., Imai, M. Isolation and genetic characterization of the nitA mutants of Escherichia coli affecting the termination factor rho. Molec. Gen. Genet. 143, 211–221 (1976). https://doi.org/10.1007/BF00266924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266924

Keywords

Navigation