Skip to main content
Log in

Polymorphic debrisoquine oxidation and acute neuroleptic-induced adverse effects

  • Short Communications
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brøsen K, Gram LF (1989) Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 36: 537–547

    Google Scholar 

  2. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA (1988) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331: 442–446

    Google Scholar 

  3. Eichelbaum M, Gross AS (1990) The genetic polymorphism of debrisoquine/sparteine metabolism. Clinical aspects. Pharmacol Ther 46: 377–394

    Google Scholar 

  4. von Bahr C, Guengerich FP, Morin G, Nordin C (1989) The use of human liver banks in pharmacogenetic research. In: Dahl SG, Gram LF (eds) Clinical Pharmacology in Psychiatry: from molecular studies to clinical reality. Springer, Berlin Heidelberg New York, 163–171

    Google Scholar 

  5. Syvalahti EKG, Lindberg R, Kallio J, de Vocht M (1986) Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br J Clin Pharmacol 22: 89–92

    Google Scholar 

  6. Spina E, Martines C, Caputi AP, Cobaleda J, Pinas B, Carrillo JA, Benitez J (1991) Debrisoquine oxidation phenotype during neuroleptic monotherapy. Eur J Clin Pharmacol 41: 467–470

    Google Scholar 

  7. Dahl-Puustinen ML, Lidén A, Alm C, Bertilsson L (1989) Disposition of perphenazine is related to polymorphic debrisoquine hydroxylation in man. Clin Pharmacol Ther 46: 78–81

    Google Scholar 

  8. von Bahr C, Movin G, Nordin C, Lidén A, Hammarlund-Udenaes M, Hedberg A, Ring H, Sjöqvist F (1991) Plasma levels of thioridazine and metabolites are influenced by the debrisoquine hydroxylation phenotype. Clin Pharmacol Ther 49: 234–240

    Google Scholar 

  9. Llerena A, Alm C, Dahl-Puustinen ML, Eqvist B, Widen J, Bertilsson L (1992) Disposition of haloperidol cosegregates with the polymorphic hydroxylation of debrisoquine. Ther Drug Monit (in press)

  10. Meyer JW, Woggon B, Baumann P, Meyer UA (1990) Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur J Clin Pharmacol 39: 613–614

    Google Scholar 

  11. Lennard MS, Silas JH, Smith AJ, Tucker GT (1977) Determination of debrisoquine and its 4-hydroxy metabolite in biological fluids by gas chromatography with flame ionization and nitrogen selective detection. J Chromatogr 133: 161–166

    Google Scholar 

  12. Marsden CD, Jenner P (1980) The pathophysiology of extrapyramidal side-effects of neuroleptic drugs. Psychol Med 10: 55–72

    Google Scholar 

  13. Gram LF, Debruyne D, Caillard V, Boulenger JP, Lacotte J, Moulin M, Zarifian E (1989) Substantial rise in sparteine metabolic ratio during haloperidol treatment. Br J Clin Pharmacol 27: 272–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spina, E., Ancione, M., Di Rosa, A.E. et al. Polymorphic debrisoquine oxidation and acute neuroleptic-induced adverse effects. Eur J Clin Pharmacol 42, 347–348 (1992). https://doi.org/10.1007/BF00266363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266363

Key words

Navigation