Skip to main content
Log in

Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

The effects of single dose (20 mg) and short-term (20 mg/day for 8 days) oral treatment with omeprazole on the pharmacokinetics and effects of oral nifedipine (10 mg capsule) and on gastric pH have been investigated in a randomized, double-blind, placebo-controlled cross-over study in 10 non-smoking healthy male subjects.

The single dose of omeprazole had no significant effect on any pharmacokinetic parameter of nifedipine, nor on gastric pH, or blood pressure or heart rate.

Short-term omeprazole treatment increased the AUC of nifedipine by 26% (95% confidence interval 9–46%), but all other pharmacokinetic parameters of nifedipine, including elimination half-life, Cmax, tmax, and recovery of the main urinary metabolite, were not significantly changed. The median gastric pH during the absorption phase of nifedipine was increased by short-term omeprazole (pH 4.2) compared to placebo treatment (pH 1.4). Blood pressure and heart rate did not differ between treatments.

The interaction between nifedipine and omeprazole is not likely to be of major clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reg»rdh CG, Gabrielsson M, Hoffman KJ, Löfberg I, Sk»nberg I (1985) Pharmacokinetics and metabolism of omeprazole in animals and man — an overview. Scand J Gastroenterol 20 (Suppl 108): 79–94

    Google Scholar 

  2. Reg»rdh CG, Andersson T, Lagerström PO, Lundborg P, Sk»nberg I (1990) The pharmacokinetics of omeprazole in humans. A study of single intravenous and oral doses. Ther Drug Monit 12: 163–172

    Google Scholar 

  3. Dickins M, Bridges JW (1982) The relationship between the binding of 2-n-alkylbenzimidazoles to rat hepatic microsomal cytochrome P-450 and the inhibition of monooxygenation. Biochem Pharmacol 31: 1315–1320

    Google Scholar 

  4. Murray M, Ryan AJ, Little PJ (1982) Inhibition of hepatic microsomal aminopyrine N-demethylase activity by benzimidazole derivatives. Quantitative structure-activity relationships. J Med Chem 25: 887–892

    Google Scholar 

  5. Andersson T, Cederberg C, Edvardsson G, Heggelund A, Lundborg P (1990) Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 47: 79–85

    Google Scholar 

  6. Andersson T, Andrén K, Cederberg C, Edvardsson G, Heggelund A, Lundborg P (1990) Effect of omeprazole and cimetidine on plasma diazepam levels. Eur J Clin Pharmacol 39: 51–54

    Google Scholar 

  7. Gugler R, Jensen JC (1985) Omeprazole inhibits oxidative drug metabolism. Studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 89: 1235–1241

    Google Scholar 

  8. Gugler R, Jensen JC (1987) Drugs other than H2-receptor antagonists as clinically important inhibitors of drug metabolism in vivo. Pharmacol Ther 33: 133–137

    Google Scholar 

  9. Henry DA, Somerville KW, Kitchingman G, Langman MJS (1984) Omeprazole: effects on oxidative drug metabolism. Br J Clin Pharmacol 18: 195–200

    Google Scholar 

  10. Prichard PJ, Walt RP, Kitchingman GK, Somerville KW, Langman MJS, Williams J, Richens A (1987) Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol 24: 543–545

    Google Scholar 

  11. Sutfin T, Balmer K, Boström H, Eriksson S, Höglund P, Paulsen O (1989) Stereoselective interaction of omeprazole with warfarin in healthy men. Ther Drug Monit 11: 176–184

    Google Scholar 

  12. Guengerich FP, Böcker RH (1988) Cytochrome P-450-catalyzed dehydrogenation of 1,4-dihydropyridines. J Biol Chem 263: 8168–8175

    Google Scholar 

  13. Guengerich FP, Martin MV, Beaune PH, Kremers P, Wolff T, Waxman DJ (1986) Characterization of rat and human liver microsomal cytochrome P-450 involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J Biol Chem 261: 5051–5060

    Google Scholar 

  14. Guengerich FP, Brian WR, Iwasaki M, Sari MA, Bäärnhielm C, Berntsson P (1991) Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 34: 1838–1844

    Google Scholar 

  15. Funaki T, Soons PA, Guengerich FP, Breimer DD (1989) In vivo oxidative cleavage of a pyridine-carboxylic acid ester metabolite of nifedipine. Biochem Pharmacol 38: 4213–4216

    Google Scholar 

  16. Guengerich FP, Peterson LA, Böcker RH (1988) Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of Hantzsch pyridine esters. J Biol Chem 263: 8176–8183

    Google Scholar 

  17. Soons PA, Schellens JHM, Breimer DD (1991) Variability in pharmacokinetics and metabolism of nifedipine and other dihydropyridine calcium entry blockers. In: Kalow W, ed. Genetic Factors Influencing the Metabolism of Foreign Compounds. Pergamon Press, Oxford (in press)

    Google Scholar 

  18. Adams LJ, Antonow DR, McClain CJ, McAllister R (1986) Effect of ranitidine on bioavailability of nifedipine. Gastroenterology 90: 1320

    Google Scholar 

  19. Majeed IA, Murray WJ, Newton DW, Othman S, All-Turk WA (1987) Spectrophotometric study of the photodecomposition kinetics of nifedipine. J Pharm Pharmacol 39: 1044–1046

    Google Scholar 

  20. Soons PA, Schellens JHM, Roosemalen MCM, Breimer DD (1991) Analysis of nifedipine and its pyridine metabolite dehydronifedipine in blood and plasma: review and improved HPLC methodology. J Pharm Biomed Anal 9: 475–484

    Google Scholar 

  21. Kleinbloesem CH, van Brummelen P, Breimer DD (1987) Nifedipine: relationship between pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 12: 12–29

    Google Scholar 

  22. Kleinbloesem CH, van Brummelen P, Danhof M, Faber H, Urquhart J, Breimer DD (1987) Rate of increase in the plasma concentration of nifedipine as a major determinant of its hemodynamic effects in humans. Clin Pharmacol Ther 41: 26–30

    Google Scholar 

  23. Roosemalen MCM, Soons PA, Funaki T, Breimer DD (1991) High-performance liquid chromatographic determination of the polar metabolites of nifedipine in plasma, blood and urine. J Chromatogr 565: 516–522

    Google Scholar 

  24. Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd ed. New York: Marcel Dekker

    Google Scholar 

  25. Henry DA, Gerkens JF, Brent PJ, Dosen PJ (1986) Omeprazole: effects on oxidative drug metabolism in the rat. Clin Exp Pharmacol Physiol 13: 377–381

    Google Scholar 

  26. Kromer W, Postius S, Riedel R, Simon WA, Hanauer G, Brand U, Gönne S, Parsons ME (1990) BY 1023/SK&F 96022 INN pantoprazole, a novel gastric proton pump inhibitor, potently inhibits acid secretion but lacks relevant cytochrome P-450 interactions. J Pharmacol Exp Ther 254: 129–135

    Google Scholar 

  27. Andersson T, Lundborg P, Reg»rdh CG (1991) Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol 40: 61–65

    Google Scholar 

  28. Andersson T, Bergstrand R, Cederberg C, Eriksson S, Lagerström PO, Sk»nberg I (1991) Omeprazole treatment does not affect the metabolism of caffeine. Clin Pharmacol Ther 49: 172

    Google Scholar 

  29. Henry D, Brent P, Whyte I, Mihaly G, Devenish-Meares S (1987) Propranolol steady-state pharmacokinetics are unaltered by omeprazole. Eur J Clin Pharmacol 33: 369–373

    Google Scholar 

  30. Oosterhuis B, Jonkman JHG (1989) Omeprazole: pharmacology, pharmacokinetics and interactions. Digestion 44 [Suppl 1]: 9–17

    Google Scholar 

  31. Andersson T, Lagerström PO, Unge P (1990) A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit 12: 329–333

    Google Scholar 

  32. Li G, Klotz U (1990) Inhibitory effect of omeprazole on the metabolism of midazolam in vitro. Arzneim Forsch 40: 1105–1107

    Google Scholar 

  33. Kronbach T, Fischer V, Meyer UA (1988) Cyclosporin metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporin-metabolizing enzyme explains interactions of cyclosporin with other drugs. Clin Pharmacol Ther 43: 630–635

    Google Scholar 

  34. Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA (1989) Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Molec Pharmacol 36: 89–96

    Google Scholar 

  35. Andersson T, Andrén K, Cederberg C, Lagerström PO, Lundborg P, Sk»nberg I (1990) Pharmacokinetics and bioavailability of omeprazole after single and repeated oral administration in heathy subjects. Br J Clin Pharmacol 29: 557–563

    Google Scholar 

  36. Howden CW, Meredith PA, Forrest JAH, Reid JL (1984) Oral pharmacokinetics of omeprazole. Eur J Clin Pharmacol 26: 641–643

    Google Scholar 

  37. Müller P, Dammann HG, Seitz H, Simon B, Kommerell B (1984) Repeated omeprazole administration and human gastric acid secretion. Ital J Gastroenterol 16: 6–8

    Google Scholar 

  38. Lind T, Andersson T, Sk»nberg I, Olbe L (1987) Biliary excretion of intravenous [14C] omeprazole in humans. Clin Pharmacol Ther 42: 504–508

    Google Scholar 

  39. Soons PA, Schoemaker HC, Cohen AF, Breimer DD Intra-individual variability in nifedipine pharmacokinetics and effects in healthy subjects. J Clin Pharmacol (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soons, P.A., van den Berg, G., Danhof, M. et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 42, 319–324 (1992). https://doi.org/10.1007/BF00266355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266355

Key words

Navigation