Skip to main content
Log in

Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs

  • Special Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abas A, Meffin PJ (1987) Enantioselective disposition of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. IV. Ketoprofen disposition. J Pharmacol Exp Ther 240: 637–641

    Google Scholar 

  • Abramson SB, Weissmann G (1989) The mechanism of action of nonsteroidal antiinflammatory drugs. Arthr Rheum 32: 1–9

    Google Scholar 

  • Adams SS, Bresloff P, Mason CG (1976) Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (-)-isomer. J Pharm Pharmacol 28: 256–257

    Google Scholar 

  • Ariens EJ (1984) Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 26: 663–668

    Google Scholar 

  • Aronoff GR, Ozawa T, DeSante KA, Nash JF, Ridolfo AS (1982) Benoxaprofen kinetics in renal impairment. Clin Pharmacol Ther 32: 190–194

    Google Scholar 

  • Baillie TA, Adams WJ, Kaiser DG, Olanoff LS, Halstead GW, Harpootlian H, Van Giessen GJ (1989) Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans. J Pharmacol Exp Ther 249: 517–523

    Google Scholar 

  • Berry BW, Jamali F (1989) Enantiomeric interaction of flurbiprofen in the rat. J Pharm Sci 78: 632–634

    Google Scholar 

  • Berry BW, Jamali F (1991) Presystemic and systemic chiral inversion of R-(-)-fenoprofen in the rat. J Pharmacol Exp Ther 258: 695–701

    Google Scholar 

  • Bjorkman S (1985) Stereoselective disposition of indoprofen in surgical patients. Br J Clin Pharmacol 20: 463–467

    Google Scholar 

  • Bopp RJ, Nash JF, Ridolfo AS, Shepard ER (1979) Stereoselective inversion of (R)-(-)-benoxaprofen to the (S)-(+)enantiomer in humans. Drug Metab Dispos 7: 356–359

    Google Scholar 

  • Bradow G, Kan LS, Fenselau C (1989) Studies of intramolecular rearrangements of acyl-linked glucuronides using salicylic acid, flufenamic acid, and (S)- and (R)-benoxaprofen and confirmation of isomerization in acyl-linked Δ9-11-carboxytetrahydrocannabinol glucuronide. Chem Res Toxicol 2: 316–324

    Google Scholar 

  • Brandt KD, Palmoski MJ (1984) Effects of salicylates and other non-steroidal anti-inflammatory drugs on articular cartilage. Am J Med 77 [Suppl 1A]: 65–69

    Google Scholar 

  • Bronfman M, Amigo L, Morales MN (1986) Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters. Biochem J 239: 781–784

    Google Scholar 

  • Buckley MMT, Brogden RN (1990) Ketorolac. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 39: 89–109

    Google Scholar 

  • Buttinoni A, Ferrari M, Colombo M, Ceserani R (1983) Biological activity of indoprofen and its optical isomers. J Pharm Pharmacol 35: 603–604

    Google Scholar 

  • Caldwell J, Marsh MV (1983) Interrelationship between xenobiotic metabolism and lipid biosynthesis. Biochem Pharmacol 32: 1667–1672

    Google Scholar 

  • Cerletti C, Manarini S, Colombo M, Tavani A (1990) The (+)-enantiomer is responsible for the antiplatelet and anti-inflammatory activity of (±)-indobufen. J Pharm Pharmacol 42: 885–887

    Google Scholar 

  • Cox JW, Cox SR, Van Giessen G, Ruwart MJ (1985) Ibuprofen stereoisomer hepatic clearance and distribution in normal and fatty in situ perfused rat liver. J Pharmacol Exp Ther 232: 636–643

    Google Scholar 

  • Cox SR (1988) Effect of route of administration on the chiral inversion of R(-)-ibuprofen. Clin Pharmacol Ther 43: 146

    Google Scholar 

  • Day RO, Furst DE, Dromgoole SH, Kamm B, Roe R, Paulus HE (1982) Relationship of serum naproxen concentration to efficacy in rheumatoid arthritis. Clin Pharmacol Ther 31: 733–740

    Google Scholar 

  • Day RO, Graham GG, Williams KM, Champion GD, de Jager J (1987) Clinical pharmacology of non-steroidal anti-inflammatory drugs. Pharmacol Ther 33: 383–433

    Google Scholar 

  • Day RO, Williams KM, Graham GG, Lee EJ, Knihinicki RD, Champion GD (1988) Stereoselective disposition of ibuprofen enantiomers in synovial fluid. Clin Pharmacol Ther 43: 480–487

    Google Scholar 

  • Demerson CA, Humber LG, Nedumparambil AA, Schilling G, Martel RR, Pace-Asciak C (1983) Resolution of etodolac and antiinflammatory and prostaglandin synthetase inhibiting properties of the enantiomers. J Med Chem 26: 1778–1780

    Google Scholar 

  • Dunagan FM, McGill PE, Kelman AW, Whiting B (1986) Quantitation of dose and concentration-effect relationships for fenclofenac in rheumatoid arthritis. Br J Clin Pharmacol 21: 409–416

    Google Scholar 

  • El Mouelhi M, Ruelius HW, Fenselau C, Dulik DM (1987) Species-dependent enantioselective glucuronidation of three 2-arylpropionic acids. Naproxen, ibuprofen and benoxaprofen. Drug Metab Dispos 15: 767–772

    Google Scholar 

  • Evans AM (1989) Enantioselectivity in clinical pharmacology: theoretical considerations and studies with ibuprofen. Doctoral Thesis, University of Adelaide, South Australia

    Google Scholar 

  • Evans AM, Nation RL, Sansom LN (1989a) Lack of effect of cimetidine on the pharmacokinetics of R(-)- and S(+)-ibuprofen. Br J Clin Pharmacol 28: 143–149

    Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA (1988) Stereoselective drug disposition: potential for misinterpretation of drug disposition data. Br J Clin Pharmacol 26: 771–780

    Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA (1989b) Stereoselective plasma protein binding of ibuprofen enantiomers. Eur J Clin Pharmacol 36: 283–290

    Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA (1990) The relationship between the pharmacokinetics of ibuprofen enantiomers and the dose of racemic ibuprofen in humans. Biopharm Drug Dispos 11: 507–518

    Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA (1991) Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclo-oxygenase inhibition: relationship between inhibition of thromboxane synthesis and the plasma unbound concentration of S(+)-ibuprofen. Br J Clin Pharmacol 31: 131–138

    Google Scholar 

  • Faed EM (1984) Properties of acylglucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev 15: 1213–1249

    Google Scholar 

  • Fears R (1985) Lipophilic xenobiotic conjugates: the pharmacological and toxicological consequences of the participation of drugs and other foreign compounds as substrates in lipid biosynthesis. Prog Lipid Res 24: 177–195

    Google Scholar 

  • Fears R, Baggaley KH, Alexander R, Morgan B, Hindley RM (1978) The participation of ethyl 4-benzyloxybenzoate (BRL 10894) and other aryl-substituted acids in glycerolipid metabolism. J Lipid Res 19: 3–11

    Google Scholar 

  • Fears R, Richards DH (1981) Association between lipid-lowering activity of aryl-substituted carboxylic acids and formation of substituted glycerolipids in rats. Biochem Soc Trans 9: 572–573

    Google Scholar 

  • Ferreira SH, Vane JR (1979) Mode of action of anti-inflammatory agents which are prostaglandin synthetase inhibitors. In: Vane JR, Ferreira SH (eds) Anti-inflammatory drugs. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology 50/II)

    Google Scholar 

  • Foster RT, Jamali F (1988) Stereoselective pharmacokinetics ofketoprofen in the rat. Drug Metab Dispos 16: 623–626

    Google Scholar 

  • Foster RT, Jamali F, Russell AS (1989a) Pharmacokinetics of ketoprofen enantiomers in cholecystectomy patients: influence of probenecid. Eur J Clin Pharmacol 37: 589–594

    Google Scholar 

  • Foster RT, Jamali F, Russell AS (1989b) Ketoprofen enantiomers in synovial fluid. J Pharm Sci 78: 881–882

    Google Scholar 

  • Foster RT, Jamali F, Russell AS, Alballa SR (1988a) Pharmacokinetics of ketoprofen enantiomers in healthy subjects following single and multiple doses. J Pharm Sci 77: 70–73

    Google Scholar 

  • Foster RT, Jamali F, Russell AS, Alballa SR (1988b) Pharmacokinetics of ketoprofen enantiomers in young and elderly arthritic patients following single and multiple doses. J Pharm Sci 77: 191–195

    Google Scholar 

  • Foster SJ, McCormick ME, Cunliffe CJ (1983) Anti-proliferative properties of clozic, a disease-modifying anti-arthritic agent. Biochem Pharmacol 32: 461–467

    Google Scholar 

  • Fournel S, Caldwell J (1986) The metabolic chiral inversion of 2-phenylpropionic acid in rat, mouse and rabbit. Biochem Pharmacol 35: 4153–4159

    Google Scholar 

  • Fournel-Gigleux S, Hamar-Hansen C, Motassim N, Antoine B, Mothe O, Decolin D, Caldwell J, Siest G (1988) Substrate specificity and enantioselectivity of arylcarboxylic acid glucuronidation. Drug Metab Dispos 16: 627–634

    Google Scholar 

  • Fried JH, Harrison IT, Lewis B, Riegl J, Rooks W, Tomolonis A (1973) Structure activity relationship among 6-substituted-2-naphthylacetic acids. Scand J Rheumatol [Suppl] 2: 7–11

    Google Scholar 

  • Fujiyoshi T, Ikeda K, Yamaura T, Saito M, Maeda E, Iida H, Hosono M, Uematsu T (1986) The pharmacological activities of optical isomers (d, l) of EB-382, a new nonsteroidal anti-inflammatory agent. Yakuri to Chiryo 14: 2215–2224

    Google Scholar 

  • Gaut ZN, Baruth H, Randall LO, Ashley C, Paulsrud JR (1975) Stereoisomeric relationships among anti-inflammatory activity, inhibition of platelet aggregation, and inhibition of prostaglandin synthetase. Prostaglandins 10: 59–66

    Google Scholar 

  • Geisslinger G, Schuster O, Stock K-P, Loew D, Bach GL, Brune K (1990) Pharmacokinetics of S(+)-and R(-)-ibuprofen in volunteers and first clinical experience of S(+)-ibuprofen in rheumatoid arthritis. Eur J Clin Pharmacol 38: 493–497

    Google Scholar 

  • Geneve J, Hayat-Bonan B, Labbe G, Degott C, Letteron P, Freneaux E, Dinh TL, Larrey D, Pessayre D (1987) Inhibition of mitochondrial B-oxidation of fatty acids by pirprofen. Role in microvesicular steatosis due to this nonsteroidal anti-inflammatory drug. J Pharmacol Exp Ther 242: 1133–1137

    Google Scholar 

  • Goodwin JS (1984) Mechanism of action of nonsteroidal anti-inflammatory agents. Am J Med 77 [Suppl 1A]: 57–64

    Google Scholar 

  • Goto J, Goto N, Nambara T (1982) Separation and determination of naproxen enantiomers in serum by high-performance liquid chromatography. J Chromatogr 239: 539–564

    Google Scholar 

  • Greig ME, Griffin RL (1975) Antagonism of slow reacting substance in anaphylaxis (SRS-A) and other spasmogens on the guinea-pig tracheal chain by hydratropic acids and their effects on anaphylaxis. J Med Chem 18: 112–116

    Google Scholar 

  • Gryglewski RJ (1979) Screening and assessment of the potency of anti-inflammatory drugs in vitro. In: Vane JR, Ferreira SH (eds) Anti-inflammatory drugs. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology 50/II)

    Google Scholar 

  • Gund P, Shen TY (1977) A model for the prostaglandin synthetase cyclooxygenase site and its inhibition by antiinflammatory arylacetic acids. J Med Chem 20: 1146–1152

    Google Scholar 

  • Guzman A, Yuste F, Toscano RA, Young JM, Van Horn AR, Muchowski JM (1986) Absolute configuration of (-)-5-benzoyl-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylic acid, the active enantiomer of ketorolac. J Med Chem 29: 589–591

    Google Scholar 

  • Harrison IT, Lewis B, Nelson P, Rooks W, Roszkowski A, Tomolonis A, Fried JH (1970) Nonsteroidal antiinflammatory agents. I. 6-Substituted 2-naphthylacetic acids. J Med Chem 13: 203–205

    Google Scholar 

  • Hayball PJ, Meffin PJ (1987) Enantioselective disposition of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. III. Fenoprofen disposition. J Pharmacol Exp Ther 240: 631–636

    Google Scholar 

  • Hendel J, Brodthagen H (1984) Entero-hepatic cycling of methotrexate estimated by use of the D-isomer as a reference marker. Eur J Clin Pharmacol 26: 103–107

    Google Scholar 

  • Hutt AJ, Caldwell J (1983) The metabolic chiral inversion of 2-arylpropionic acids-a novel route with pharmacological consequences. J Pharm Pharmacol 35: 693–704

    Google Scholar 

  • Hyneck ML, Smith PC, Munafo A, McDonagh AF, Benet LZ (1988) Disposition and irreversible plasma protein binding of tolmetin in humans. Clin Pharmacol Ther 44: 107–114

    Google Scholar 

  • Iwakawa S, Spahn H, Benet LZ, Lin ET (1990) Stereoselective binding of the glucuronide conjugates of carprofen enantiomers to human serum albumin. Biochem Pharmacol 39: 949–953

    Google Scholar 

  • Iwakawa S, Suganuma T, Lee S-F, Spahn H, Benet LZ, Lin ET (1989) Direct determination of diastereomeric carprofen glucuronides in human plasma and urine and preliminary measurements of stereoselective metabolic and renal elimination after oral administration of carprofen in man. Drug Metab Dispos 17: 414–419

    Google Scholar 

  • Jamali F, Berry BW, Tehrani MR, Russell AS (1988a) Stereoselective pharmacokinetics of flurbiprofen in humans and rats. J Pharm Sci 77: 666–669

    Google Scholar 

  • Jamali F, Mehvar R, Lemko C, Eradiri O (1988b) Application of a stereospecific high-performance liquid chromatography assay to a pharmacokinetic study of etodolac enantiomers in humans. J Pharm Sci 77: 963–966

    Google Scholar 

  • Jamali F, Mehvar R, Pasutto FM (1989) Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci 78: 695–715

    Google Scholar 

  • Jamali F, Russell AS, Foster RT, Lemko C (1990) Ketoprofen pharmacokinetics in humans: evidence of enantiomeric inversion and lack of interaction. J Pharm Sci 79: 460–461

    Google Scholar 

  • Jamali F, Singh NN, Pasutto FM, Russell AS, Coutts RT (1988c) Pharmacokinetics of ibuprofen enantiomers in humans following oral administration of tablets with different absorption rates. Pharm Res 5: 40–43

    Google Scholar 

  • Juby PF, Goodwin WR, Hudyma TW, Partyka RA (1972) Antiinflammatory activity of some indan-1-carboxylic acids and related compounds. J Med Chem 15: 1297–1306

    Google Scholar 

  • Juhl RP, Van Thiel DH, Dittert LW, Albert KS, Smith RB (1983) Ibuprofen and sulindac kinetics in alcoholic liver disease. Clin Pharmacol Ther 34: 104–109

    Google Scholar 

  • Kaiser DG, Van Giessen, Reischer RJ, Wechter WJ (1976) Isomeric inversion of ibuprofen (R)-enantiomer in humans. J Pharm Sci 65: 269–273

    Google Scholar 

  • Kaltenbronn JS (1973) 4- and 5-Aryl-1-naphthaleneacetic acids as antiinflammatory agents. J Med Chem 16: 490–493

    Google Scholar 

  • Kaplan HB, Edelson HS, Kobchak HM, Given WP, Abramson S, Weissmann G (1984) Effects of non-steroidal anti-inflammatory agents on human neutrophil function in vitro and in vivo. Biochem Pharmacol 33: 371–378

    Google Scholar 

  • Kawai K. Shiojiri H, Fukushima H, Nozawa Y (1984) The effect of clidanac, a potent anti-inflammatory drug, on mitochondrial respiration: a consideration of the uncoupling activity of optical enantiomers. Res Commun Chem Pathol Pharmacol 45: 399–406

    Google Scholar 

  • Knadler MP, Brater DC, Hall SD (1989) Plasma protein binding of flurbiprofen: enantioselectivity and influence of pathophysiological status. J Pharmacol Exp Ther 249: 378–385

    Google Scholar 

  • Knadler MP, Hall SD (1989) High-performance liquid chromatographic analysis of the enantiomers of flurbiprofen and its metabolites in plasma and urine. J Chromatogr 494: 173–182

    Google Scholar 

  • Knadler MP, Hall SD (1990) Stereoselective arylpropionyl-CoA thioester formation in vitro. Chirality 2: 67–73

    Google Scholar 

  • Knights KM, Drew R, Meffin PJ (1988) Enantiospecific formation of fenoprofen coenzyme A thioester in vitro. Biochem Pharmacol 37: 3539–3542

    Google Scholar 

  • Knihinicki RD, Williams KM, Day RO (1989) Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs-1. In vitro studies of ibuprofen and flurbiprofen. Biochem Pharmacol 38: 4389–4395

    Google Scholar 

  • Ku EC, Wasvary JM (1975) Inhibition of prostaglandin synthase by pirprofen. Studies with sheep seminal vesicle enzyme. Biochim Biophys Acta 384: 360–368

    Google Scholar 

  • Kulmacz RJ (1989) Topography of prostaglandin H synthase. Anti-inflammatory agents and the protease-sensitive arginine 253 region. J Biol Chem 264: 14136–14144

    Google Scholar 

  • Kulmacz RJ, Lands WEM (1985) Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J Biol Chem 260: 12572–12578

    Google Scholar 

  • Kuzuna S, Matsumoto N, Kometani T, Kawai K (1974) Biological activities of optical isomers of 6-chloro-5-cyclohexylindan-1-carboxylic acid (TAI-248: anti-inflammatory agent). Jpn J Pharmacol 24: 695–705

    Google Scholar 

  • Lan SJ, Kripalani KJ, Dean AV, Egli P, Difazio LT, Schreiber EC (1976) Inversion of optical configuration of α-methylfluorene-2-acetic acid (cicloprofen) in rats and monkeys. Drug Metab Dispos 4: 330–339

    Google Scholar 

  • Lee EJD, Williams K, Day R, Graham G, Champion D (1985) Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 19: 669–674

    Google Scholar 

  • Lin JH, Cocchetto DM, Duggan DE (1987) Protein binding as a primary determinant of the clinical pharmacokinetic properties of non-steroidal anti-inflammatory drugs. Clin Pharmacokinet 12: 402–432

    Google Scholar 

  • Lombard A, Rossetti V, Buffa M, Gabriel L, Miglietta A (1985) In vitro studies on the stereoselective inversion of R(-)- to S(+)- ketoprofen. IRCS Med Sci 13: 1025

    Google Scholar 

  • Markey CM, Alward A, Weller PE, Marnett LJ (1987) Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities. J Biol Chem 262: 6266–6279

    Google Scholar 

  • Matsuda K, Tanaka Y, Ushiyama S, Ohnishi K, Yamazaki M (1984) Inhibition of prostaglandin synthesis by sodium 2-[4-(2-oxocyclopentylmethyl)phenyl]-propionate dihydrate (CS-600), a new anti-inflammatory drug, and its active metabolite in vitro and in vivo. Biochem Pharmacol 15: 2473–2478

    Google Scholar 

  • Mayer JM, Bartolucci C, Maitre J-M, Testa B (1988) Metabolic chiral inversion of anti-inflammatory 2-arylpropionates: lack of reaction in liver homogenates, and study of methine proton acidity. Xenobiotica 18: 533–543

    Google Scholar 

  • McKenzie LS, Horsburgh BA, Ghosh P, Taylor TKF (1976) Effect of anti-inflammatory drugs on sulphated glycosaminoglycan synthesis in aged human articular cartilage. Ann Rheum Dis 35: 487–497

    Google Scholar 

  • Meffin PJ, Sallustio BC, Purdie YT, Jones ME (1986) Enantioselective disposition of 2-arylpropionic nonsteroidal anti-inflammatory drugs. I. 2-Phenylpropionic acid disposition. J Pharmacol Exp Ther 238: 280–287

    Google Scholar 

  • Meffin PJ, Zilm DM, Veenendaal JR (1983) Reduced clofibric acid clearance in renal dysfunction is due to a futile cycle. J Pharmacol Exp Ther 227: 732–738

    Google Scholar 

  • Mehvar R, Jamali F (1988) Pharmacokinetic analysis of the enantiomeric inversion of chiral nonsteroidal antiinflammatory drugs. Pharm Res 5: 76–79

    Google Scholar 

  • Muller S, Mayer JM, Etter J-C, Testa B (1990) Metabolic chiral inversion of ibuprofen in isolated rat hepatocytes. Chirality 2: 74–78

    Google Scholar 

  • Nagashima H, Tanaka Y, Watanabe H, Hayashi R, Kawada K (1984) Optical inversion of (2R)-to (2S)-isomers of 2-[4-(2-oxocyclopentylmethyl)-phenyl]propionic acid (loxoprofen), a new anti-inflammatory agent, and its monohydroxy metabolites in the rat. Chem Pharm Bull 32: 251–257

    Google Scholar 

  • Nakamura Y, Yamaguchi T (1987) Stereoselective metabolism of 2-phenylpropionic acid in rat. I: In vitro studies on the stereoselective isomerization and glucuronidation of 2-phenylpropionic acid. Drug Metab Dispos 15: 529–534

    Google Scholar 

  • Nakamura Y, Yamaguchi T, Takahashi S, Hashimoto S, Iwatani K, Nakagawa Y (1981) Optical isomerisation mechanism of R(-)-hydratropic acid derivatives. J Pharmacobiodyn 4: s-1

  • Netter R, Bannworth B, Royer-Marrot MJ (1989) Recent findings on the pharmacokinetics of non-steroidal anti-inflammatory drugs in synovial fluid. Clin Pharmacokinet 17: 145–162

    Google Scholar 

  • Nickander RC, Kraay RJ, Marshall WS (1971) Anti-inflammatory and analgesic effects of fenoprofen. Fed Proc 30: 563 (Abstract)

    Google Scholar 

  • Nishizawa EE, Wynalda DJ, Suydam DE, Molony BA (1973) Flurbiprofen, a new potent inhibitor of platelet aggregation. Thromb Res 3: 577–588

    Google Scholar 

  • Øie S, Tozer TN (1979) Effects of altered plasma protein binding on apparent volume of distribution. J Pharm Sci 68: 1203–1205

    Google Scholar 

  • Palatini P, Montanari G, Perosa A, Forgione A, Pedrazzini S, Furlanut M (1988) Stereospecific disposition of flunoxaprofen enantiomers in human beings. Int J Clin Pharmacol Res 8: 161–167

    Google Scholar 

  • Pedrazzini S, De Angelis M, Zanoboni Muciaccia W, Sacchi C, Forgione A (1988) Stereochemical pharmacokinetics of the 2-arylpropionic acid non-steroidal antiinflammatory drug flunoxaprofen in rats and in man. Arzneimittelforschung 38: 1170–1175

    Google Scholar 

  • Rampart M, Williams TJ (1986) Suppression of inflammatory oedema by ibuprofen involving a mechanism independent of cyclooxygenase inhibition. Biochem Pharmacol 35: 581–586

    Google Scholar 

  • Rendic S, Alebic-Kolbah T, Kajfez F, Sunjic V (1980) Stereoselective binding of (+)- and (-)-α-(benzoylphenyl)propionic acid (ketoprofen) to human serum albumin. Farmaco [Sci] 35: 51–59

    Google Scholar 

  • Rowland M, Tozer TN (1989) Clinical pharmacokinetics: concepts and applications. Lea and Febiger, Philadelphia

    Google Scholar 

  • Rubin A, Knadler MP, Ho PPK, Bechtol LD, Wolen RL (1985) Stereoselective inversion of (R)-fenoprofen to (S)-fenoprofen in humans. J Pharm Sci 74: 82–85

    Google Scholar 

  • Rudy AC, Anliker KS, Hall SD (1990) High-performance liquid chromatographic determination of the stereoisomeric metabolites of ibuprofen. J Chromatogr 528: 395–405

    Google Scholar 

  • Sallustio BC, Knights KM, Meffin PJ (1990) The stereospecific inhibition of endogenous triacylglycerol synthesis by fenoprofen in rat isolated adipocytes and hepatocytes. Biochem Pharmacol 40: 1414–1417

    Google Scholar 

  • Sallustio BC, Meffin PJ, Knights KM (1988a) The stereospecific incorporation of fenoprofen into rat hepatocyte and adipocyte triacylglycerols. Biochem Pharmacol 37: 1919–1923

    Google Scholar 

  • Sallustio BC, Purdie YJ, Whitehead AG, Ahern MJ, Meffin PJ (1988b) The disposition of ketoprofen enantiomers in man. Br J Clin Pharmacol 26: 765–770

    Google Scholar 

  • Sanins SM, Adams WJ, Kaiser DG, Halstead GW, Baillie TA (1990) Studies on the metabolism and chiral inversion of ibuprofen in isolated rat hepatocytes. Drug Metab Dispos 18: 527–533

    Google Scholar 

  • Schanker LS, Jeffrey JJ (1961) Active transport of foreign pyrimadines across the intestinal epithelium. Nature 190: 727–728

    Google Scholar 

  • Shinohara Y, Kirii N, Tamaoki H, Magara H, Baba S (1990) Determination of the enantiomers of suprofen and [2H3]suprofen in plasma by capillary gas chromatography-mass spectrometry. J Chromatogr 525: 93–104

    Google Scholar 

  • Siebler D, Kinawi A (1989) Binding of racemic indoprofen and its enantiomers to human serum albumin. Arzneimittelforschung 39: 659–660

    Google Scholar 

  • Simmonds RG, Woodage TJ, Duff SM, Green JN (1980) Stereospecific inversion of (R)-(-)-benoxaprofen in rat and man. Eur J Drug Metab Pharmacokinet 5: 169–172

    Google Scholar 

  • Simonyi M (1984) On chiral drug action. Med Res Rev 4: 359–413

    Google Scholar 

  • Singh NN, Jamali F, Pasutto FM, Russell AS, Coutts RT, Drader KS (1986) Pharmacokinetics of the enantiomers of tiaprofenic acid in humans. J Pharm Sci 75: 439–442

    Google Scholar 

  • Sioufi A, Colussi D, Marfil F, Dubois JP (1987) Determination of the (+)- and (-)-enantiomers of pirprofen in human plasma by high-performance liquid chromatography. J Chromatogr 414: 131–137

    Google Scholar 

  • Smith DF (1989) The stereoselectivity of drug action. Pharmacol Toxicol 65: 321–331

    Google Scholar 

  • Smith PC, McDonagh AF, Benet LZ (1986) Irreversible binding of zomepirac to plasma proteins in vitro and in vivo. J Clin Invest 77: 934–939

    Google Scholar 

  • Spahn H, Iwakawa S, Benet LZ, Lin ET (1987) Influence of probenecid on the urinary excretion rates of the diastereomeric benoxaprofen glucuronides. Eur J Drug Metab Pharmacokinet 12: 233–237

    Google Scholar 

  • Spahn H, Iwakawa S, Lin ET, Benet LZ (1989a) Procedures to characterize in vivo and in vitro enantioselective glucuronidation properly: studies with benoxaprofen glucuronides. Pharm Res 6: 125–132

    Google Scholar 

  • Spahn H, Spahn I, Benet LZ (1989b) Probenecid-induced changes in the clearance of carprofen enantiomers: a preliminary study. Clin Pharmacol Ther 45: 500–505

    Google Scholar 

  • Stafanger G, Larsen HW, Hansen H, Sorensen K (1981) Pharmacokinetics of ketoprofen in patients with chronic renal failure. Scand J Rheumatol 10: 189–192

    Google Scholar 

  • Takeguchi C, Sih CJ (1972) A rapid spectrophotometric assay for prostaglandin synthetase: application to the study of non-steroidal anti-inflammatory agents. Prostaglandins 2: 169–184

    Google Scholar 

  • Tamassia V, Jannuzzo MG, Moro E, Stegnjaich S, Groppi W, Nicolis FB (1984) Pharmacokinetics of the enantiomers of indoprofen in man. Int J Clin Pharmacol Res 4: 223–230

    Google Scholar 

  • Tamura S, Kuzuna S, Kawai K (1981a) Inhibition of prostaglandin biosynthesis by clidanac and related compounds: structural and conformational requirements for PG synthetase inhibition. J Pharm Pharmacol 33: 29–32

    Google Scholar 

  • Tamura S, Kuzuna S, Kawai K, Kishimoto S (1981b) Optical isomerization of R(-)-clidanac to the biologically active S(+)-isomer in guinea-pigs. J Pharm Pharmacol 33: 701–706

    Google Scholar 

  • Tanaka Y, Hayashi R (1980) Stereospecific inversion of configuration of 2-(2-isopropylindan-5-yl)-propionic acid in rats. Chem Pharm Bull 28: 2542–2545

    Google Scholar 

  • Tomlinson RV, Ringold HJ, Qureshi MC, Forchielli E (1972) Relationship between inhibition of prostaglandin synthesis and drug efficacy: Support for the current theory on mode of action of aspirin-like drugs. Biochem Biophys Res Commun 46: 552–558

    Google Scholar 

  • Tucker GT, Lennard MS (1990) Enantiomer specific pharmacokinetics. Pharmacol Ther 45: 309–329

    Google Scholar 

  • Upton RA, Williams RL, Kelly J, Jones RM (1984) Naproxen pharmacokinetics in the elderly. Br J Clin Pharmacol 18: 207–214

    Google Scholar 

  • van Breemen RB, Fenselau C (1985) Acylation of albumin by 1-O-acylglucuronides. Drug Metab Dispos 13: 318–320

    Google Scholar 

  • van den Ouweland FA, Franssen MJAM, van de Putte LBA, Tan Y, van Ginneken CAM, Gribnau FWJ (1987) Naproxen pharmacokinetics in patients with rheumatoid arthritis during active polyarticular inflammation. Br J Clin Pharmacol 23: 189–193

    Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 231: 232–235

    Google Scholar 

  • Verbeeck RK (1990) Pharmacokinetic drug interactions with non-steroidal anti-inflammatory drugs. Clin Pharmacokinet 19: 44–66

    Google Scholar 

  • Verbeeck RK, Blackburn JL, Loewen GR (1983) Clinical Pharmacology of non-steroidal anti-inflammatory drugs. Clin Pharmacokinet 8: 297–331

    Google Scholar 

  • Wechter WJ, Loughhead DG, Reischer RJ, van Giessen GJ, Kaiser DG (1974) Enzymatic inversion at saturated carbon: nature and mechanism of the inversion of R(−) p-iso-butyl hydratropic acid. Biochem Biophys Res Commun 61: 833–837

    Google Scholar 

  • Williams K, Day R, Knihinicki R, Duffield A (1986) The stereoselective uptake of ibuprofen enantiomers into adipose tissue. Biochem Pharmacol 35: 3403–3405

    Google Scholar 

  • Williams KM, Day RO (1988) The contribution of enantiomers to variability in response to anti-inflammatory drugs. Agents Actions [Suppl] 24: 76–84

    Google Scholar 

  • Williams KM, Lee EJD (1985) Importance of drug enantiomers in clinical pharmacology. Drugs 30: 333–354

    Google Scholar 

  • Young MA, Aarons L, Toon S (1991) The pharmacokinetics of the enantiomers of flurbiprofen in patients with rheumatoid arthritis. Br J Clin Pharmacol 31: 102–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.M. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol 42, 237–256 (1992). https://doi.org/10.1007/BF00266343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266343

Key words

Navigation