Skip to main content
Log in

Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical ozone generation process was studied wherein glassy carbon anodes and air depolarized cathodes were used to produce ozone at concentrations much higher than those obtainable by conventional oxygen-fed corona discharge generators. A mathematical model of the build up of ozone concentration with time is presented and compared to experimental data. Products based on this technology show promise of decreased initial costs compared with corona discharge ozone generation; however, energy consumption per kg ozone is greater. Recent developments in the literature are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

electrode area (m2)

Ar * :

modified Archimedes number, d b 3 gαG2 (1 — αG)

C O 3 (aq) :

concentration of dissolved ozone (mol m−3)

C O 3 i :

concentration at interface (mol m−3)

C O 3 1 :

concentration in bulk liquid (mol m−3)

D :

diffusion coefficient (m2 s−1)

E :

electrode potential against reference (V)

F :

charge of one mole of electrons (96 485 C mol−1)

g :

gravitational acceleration (9.806 65 m s−2)

i :

current density (A m−2)

i 1 :

limiting current density (A m−2)

I :

current (A)

j :

material flux per unit area (mol m−2 s−1)

k obs :

observed rate constant (mol−1 s−1)

k t :

thermal conductivity (J s−1 K−1)

L :

reactor/anode height (m)

N O 3 :

average rate of mass transfer (mol m−2 s−1)

Q :

heat flux (J s−1)

r i :

radius of anode interior (m)

r a :

radius of anode exterior (m)

r c :

radius of cathode (m)

R :

gas constant (8.314 J K−1 mol−1)

S c :

Schmidt number, v/D

Sh :

Sherwood number, k m d b/D = i L d b/zFD[O3]

t :

time (s)

T i :

temperature of inner surface (K)

T o :

temperature of outer surface (K)

U :

reactor terminal voltage (V)

ν:

electrolyte linear velocity (m s−1)

V :

volume (m3)

V O 3 :

volume of ozone evolved (10−6 m3 h−1)

z i :

number of Faradays per mole of reactant in the electrochemical reaction

αG :

gas phase fraction in the electrolyte

δ:

(mean) Nernst diffusion layer thickness (m)

Φ:

fractional current efficiency

η:

overpotential (V)

ν:

electrolyte kinematic viscosity (m2 s−1)

ρ:

electrolyte resistivity (V A−1 m)

References

  1. S. Stucki and G. Theis, ‘In situ Production of Ozone in Water Using a SPE Electrolyse.’ Paper 673, 163rd Meeting of the Electrochemical Society, 8–13 May (1983), San Francisco, CA.

  2. S. Stucki, G. Theis, R. Kotz, H. Davantay and J. J. Christen, J. Electrochem. Soc. 132(2) (1985) 367–71.

    Google Scholar 

  3. H. P. Klein and S. Stucki, ‘The Production of Ozone by Electrolysis and its Application to High Purity Water Systems’. 7th Ozone World Congress, International Ozone Association, Tokyo, 9–12 September (1985).

    Google Scholar 

  4. Chlorine Engineers Corporation Ltd., Shosen Mitsui Bldg., 1-1, Toranomon 2-chome, Minato-ku, Tokyo 105, Japan (Brochure, 1991).

  5. Permelec Electrode Ltd., 1159 Ishikawa, Fujisawa City, Kanagawa Prefecture, Japan (Brochure, 1991).

  6. M. Katoh, Y. Nishiki, and S. Nakamatsu, ‘A Study on Electrochemical Ozone Generator Using Oxygen Gas Diffusion Cathode’. Meeting of the Japan Electrochem. Society, April 1992.

  7. E-TEK, Inc., 6 Mercer Road, Natick Industrial Park, Natick, MA 01760, USA.

  8. P. C. Foller and C. W. Tobias, J. Electrochem. Soc. 129 (1982) 505.

    Google Scholar 

  9. P. C. Foller and M. L. Goodwin, Ozone: Sci. & Engng 6 (1984) 29–36.

    Google Scholar 

  10. P. C. Foller and C. W. Tobias, ‘Ozone Production by Electrolysis’, US Patent 4 316 782 (1982).

  11. P. C. Foller, M. L. Goodwin and C. W. Tobias, ‘Electrodes for Ozone Production’, US Patent 4 375 395 (1983).

  12. P. C. Foller, ‘Process and Device for the Generation of Ozone via the Anodic Oxidation of Water’, US Patent 4 541 989 (1985).

  13. C. A. Wamser, J. Am. Chem. Soc. 70 (1948) 1209–15.

    Google Scholar 

  14. C. A. Wamser, J. Am. Chem. Soc. 73 (1951) 409–16.

    Google Scholar 

  15. A. J. Bard, R. Parsons and J. Jordon (eds.), ‘Standard Potentials in Aqueous Solution’, Marcel Dekker, New York (1985).

    Google Scholar 

  16. J. D. Seader and C. W. Tobias, Ind. Eng. Chem. 44(9) (1952) 2207.

    Google Scholar 

  17. T. R. Beck and R. W. Moulton, J. Electrochem. Soc. 103(4) (1956) 247.

    Google Scholar 

  18. D. P. Semchenko, E. T. Lyubushkina and V. Lyubushkin, Electrokhimiya 9(11) (1973) 1744.

    Google Scholar 

  19. P. C. Foller and C. W. Tobias, J. Electrochem. Soc. 129 (1982) 568.

    Google Scholar 

  20. H. P. Fritz, J. C. G. Thanos and D. W. Wabner, Z. Naturforsch. 34B (1979) 1617.

    Google Scholar 

  21. J. C. G. Thanos, H. P. Fritz and D. W. Wabner, J. Appl. Electrochem. 14 (1984) 389.

    Google Scholar 

  22. D. W. Wabner and J. C. G. Thanos, J. Electroanal. Chem. 182 (1985) 37.

    Google Scholar 

  23. J. C. Hwang, ‘Electrolytic Generation of Ozone’. Paper 592, 166th Meeting of the Electrochemical Society, New Orleans, 7–12 October (1984).

  24. A. M. Couper and S. Bullen, in ‘Electrochemical Engineering and the Environment’, I. Chem. E. Symp. Series No. 127, I. Chem. E., Rugby (1992) pp. 49–58.

    Google Scholar 

  25. N. Watanabe, T. Nakajima and H. Touhara, ‘Graphite Fluorides’, Elsevier, Amsterdam (1988) pp. 1–22.

    Google Scholar 

  26. F. Solomon, US Patent, 4 927 515 (1990).

  27. I. Rousar, K. Micka and A. Kimla, Electrochemical Engineering, Vol. 2, Elsevier, Amsterdam (1986).

    Google Scholar 

  28. I. Rousar and V. Cezner, Electrochim. Acta 20 (1975) 289, 295.

    Google Scholar 

  29. L. J. J. Janssen, G. J. Visser, J. Appl. Electrochem. 21 (1991) 753.

    Google Scholar 

  30. J. M. Bisang, ibid. 21 (1991) 753.

    Google Scholar 

  31. J. M. Bisang and G. Kreysa, ibid. 18 (1988) 422.

    Google Scholar 

  32. R. E. Meredith and C. W. Tobias, Adv. Electrochem. electrochem. Engng. 2 (1965) 15.

    Google Scholar 

  33. R. E. Meredith and C. W. Tobias, J. Appl. Phys. 31 (1960) 1270.

    Google Scholar 

  34. H. Vogt, J. Appl. Electrochem. 17 (1987) 419.

    Google Scholar 

  35. L. J. J. Janssen and G. J. Visser, ibid. 21 (1991) 386.

    Google Scholar 

  36. L. Sigrist, O. Dossenbach and N. Ibl, ibid. 10 (1980) 223.

    Google Scholar 

  37. H. Vogt, in ‘Comprehensive Treatise on Electrochemistry’, Vol. 6, (edited by E. Yeager, J. O' M. Bockris, B. E. Conway and S. Sarangapani), Plenum, New York (1983).

    Google Scholar 

  38. H. Vogt, Electrochim. Acta 34 (1989) 1429.

    Google Scholar 

  39. R. Battino (ed.), Solubility Data Series, Vol. 7, Pergamon/IUPAC, Oxford (1981).

    Google Scholar 

  40. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, J. Phys. Chem. Ref. Data 11 (Supplement 2) (1982).

  41. L. Sigrist, O. Dossenbach and N. Ibl, Int. J. Heat Mass Transfer 22 (1979) 1397.

    Google Scholar 

  42. G. Kreysa and M. Kuhn, J. Appl. Electrochem. 15 (1985) 517.

    Google Scholar 

  43. T. Sakai, H. Takenaka, E. Torikai, J. Electrochem. Soc. 133 (1986) 88.

    Google Scholar 

  44. J. Hoigne, ‘Mechanisms, Rates, and Selectivities of Oxidation of Organic Compounds Initiated by Ozonation of Water’, in ‘Handbook of Ozone Tech nology and Applications’, (edited by R. G. Rice and A. Netzer) Ann Arbor Science, Ann Arbor, MI (1982) p. 341 ff.

    Google Scholar 

  45. C.-H. Kuo and F. H. Yocum, ‘Mass Transport of Ozone in Aqueous Systems’, ibid.‘ pp. 105 ff.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foller, P.C., Kelsall, G.H. Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes. J Appl Electrochem 23, 996–1010 (1993). https://doi.org/10.1007/BF00266121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266121

Keywords

Navigation