Skip to main content
Log in

Autopolyploidy in Dactylis glomerata L.: further evidence from studies of chloroplast DNA variation

  • Originals
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Chloroplast DNA variation has been used to examine some of the maternal lineages involved in the evolution of the intraspecific polyploid complex, Dactylis glomerata L. Diploid (2x) and tetraploid (4x) individuals were collected from natural populations of the subspecies glomerata (4x), marina (4x) and lusitanica (2x), as well as from sympatric 2x/4x populations of the Galician type. Digestion of their ctDNA with 11 restriction endonucleases revealed enough variation to characterise three ctDNA variants, designated MBMK, MBmK and mBMK. The distribution of these ctDNA variants reflects different stages in their spread among the populations. The MBMK ctDNA variant predominated at both ploidy levels in subspecies glomerata, lusitanica and marina, and in recent tetraploid Galician/glomerata hybrids. The MBmK variant was detected in a single tetraploid individual and probably results from a relatively recent mutation. Fixation of the mBMK minority variant in the diploid and tetraploid Galician populations adds to the evidence concerning the possible origin of the Galician tetraploids. It means that the Galician diploids were maternal ancestors of the tetraploids. This result complements evidence from earlier studies based on morphology or biochemical markers, and reduces the likelihood that the tetraploids arose by hybridisation between an ancient Galician diploid and an alien tetraploid. It is, however, consistent with a true autopolyploid origin of the tetraploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardouin P, Jay M, Lumaret R (1987) Etude d'une situation de sympatrie entre diploïdes et tetraploïdes sur la base du polymorphisme enzymatique et phénolique. Can J Bot 65:526–531

    Google Scholar 

  • Banks JA, Birky CW (1985) Chloroplast DNA diversity is low in a wild plant, Lupinus texensis. Proc Natl Acad Sci USA 82:6950–6954

    Google Scholar 

  • Barrientos E (1985) Evolution dans les complexes autopolyploïdes — Exemple de Dactylis glomerata L. (Graminée): étude comparative de la structure génétique des populations dans deux situations de contact entre diploïdes et tétraploïdes. Thesis Université Sciences et Techniques du Languedoc, Montpellier, pp 35–54

    Google Scholar 

  • Borrill M (1978) Evolution and genetic resources in cocksfoot: Annual Report of the Welsh Plant Breeding Station 1977. University College Wales, Aberystwyth, pp 190–209

    Google Scholar 

  • Borrill M, Linder R (1971) Diploid-tetraploid sympatry in Dactylis (Gramineae). New Phytol 70:1111–1124

    Google Scholar 

  • Bowman CM, Dyer TA (1982) Purification and analysis of DNA from wheat chloroplasts isolated in nonaqueous media. Anal Biochem 122:108–118

    Google Scholar 

  • Bowman CM, Bonnard G, Dyer TA (1983) Chloroplast DNA variation between species of Triticum and Aegilops; location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor Appl Genet 65:247–262

    Google Scholar 

  • Carroll CP (1966) Autopolyploïdy and the assortment of chromosomes. Chromosoma 18:19–43

    Google Scholar 

  • Casler M, Huguessen P (1988) Performance of tetraploid progenies derived from 2x/4x inter-subspecific crosses in Dactylis glomerata L. Genome 30:591–596

    Google Scholar 

  • Clausen J, Keck DD, Heisey WM (1945) Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy with examples from the Madiinae. Carnegie Institute, Washington 564, p 174

    Google Scholar 

  • Clegg MT, Brown AHD, Whitfeld PR (1984 a) Chloroplast DNA diversity in wild and cultivated barley: implications for genetics conservation. Genet Res Camb 43:339–343

    Google Scholar 

  • Clegg MT, Rawson JRY, Thomas K (1984 b) Chloroplast DNA variation in pearl millet and related species. Genetics 106:449–461

    Google Scholar 

  • Curtis SE, Clegg MT (1984) Molecular evolution of chloroplast DNA sequences. Mol Biol Evol 1:291–301

    Google Scholar 

  • De Wet JMJ (1980) Origin of polyploids. In: Lewis WH (ed) Polyploidy-Biological relevance. Plenum Press, New York, pp 3–15

    Google Scholar 

  • Dennijs TPM, Peloquin SJ (1977) 2n gametes in potato species and their function in sexual polyploidization. Euphytica 26:585–600

    Google Scholar 

  • Erickson LR, Strauss NA, Beversdorf WD (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor Appl Genet 65:201–206

    Google Scholar 

  • Harlan JR, De Wet JM (1975) On Ö Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Google Scholar 

  • Huguessen P (1986) The occurrence and potential of 2n eggs in Dactylis. Masters Thesis, University of Wisconsin-Madison, pp 1–73

    Google Scholar 

  • Jackson RC, Casey J (1982) Cytogenetics analysis of autopolyploids: models and methods for triploids to octoploids. Am J Bot 69:487–501

    Google Scholar 

  • Kung SD, Zhu YS, Shen GF (1982) Nicotiana chloroplast genome. 3. Chloroplast DNA evolution. Theor Appl Genet 61:73–79

    Google Scholar 

  • Lehvaslaiho H, Saura A, Lokki J (1987) Chloroplast DNA variation in the grass tribe Festuceae. Theor Appl Genet 74:298–302

    Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Google Scholar 

  • Love A (1964) The biological species concept and its evolutionary structure. Taxon 13:33–45

    Google Scholar 

  • Lumaret R (1985) Phenotypic and genotypic variation within and between populations of the polyploid complex, Dactylis glomerata L. In: Haeck J, Woldendorp JW (eds) Structure and functioning of plant populations/2, phenotypic and genotypic variation in plant populations. North-Holland, Amsterdam, pp 343–354

    Google Scholar 

  • Lumaret R (1986) Doubled duplication of the structural gene for cytosolic phosphoglucose isomerase in the Dactylis glomerata L. polyploid complex. Mol Biol Evol 3:499–521

    Google Scholar 

  • Lumaret R (1988) Cytology, genetics and evolution in the genus Dactylis. CRC Crit Rev Plant Sci 7:55–91

    Google Scholar 

  • Lumaret R (1989) Invasion of natural pastures by a cultivated grass (Dactylis glomerata) in Galicia, Spain: Process and consequences on plant-cattle interactions. In: Di Castri F, Hansen AJ (eds) Biological invasions in Europe and the Mediterranean basin. Junk, La Hague (in press)

    Google Scholar 

  • Lumaret R, Barrientos E (1989) Phylogenic relationships and gene flow between sympatric diploid and tetraploid plants of Dactylis glomerata L. Plant Syst Evol (in press)

  • Lumaret R, Guillerm JL, Delay J, Loutfi AAL, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73:436–446

    Google Scholar 

  • McCollum GD (1958) Comparative studies of chromosome pairing in natural and induced tetraploid Dactylis. Chromosoma 9:571–605

    Google Scholar 

  • Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130:S6-S29

    Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010

    Google Scholar 

  • Palmer JD; Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189

    Google Scholar 

  • Salts Y, Herrmann RG, Peleg N, Lavi V, Izhar S, Frankel R, Beeckman JS (1984) Physical mapping of plastid DNA variation among eleven Nicotiana species. Theor Appl Genet 69:1–14

    Google Scholar 

  • Soltis DE (1984) Autopolyploidy in Tolmiea menziesii (Saxifragaceae). Am J Bot 71:1171–1174

    Google Scholar 

  • Soltis DE, Rieseberg LH (1986) Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Am J Bot 73:310–318

    Google Scholar 

  • Stebbins GL, Zohary D (1959) Cytogenetic and evolutionary studies in the genus Dactylis. 1. Morphology distribution and interrelationships of the diploid subspecies. Univ California Publ Botany 31:1–40

    Google Scholar 

  • Terachi T, Ogihara Y, Tsunewaki K (1984) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. III. Chloroplast genomes of the M and modified M genome-carrying species. Genetics 108:681–695

    Google Scholar 

  • Tsunewaki K, Ogihara Y (1983) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. II. On the origin of polyploid wheat cytoplasms as suggested by Chloroplast DNA restriction fragment patterns. Genetics 104:155–171

    Google Scholar 

  • Vedel F, Quetier F, Cauderon Y, Dosba F, Doussinault G (1981) Studies on maternal inheritance in polyploid wheats with cytoplasmic DNAs as genetic markers. Theor Appl Genet 59:239–245

    Google Scholar 

  • Zohary D, Nur U (1959) Natural triploids in orchard grass Dactylis glomerata L. polyploid complex and their significance for gene flow from diploid to tetraploid levels. Evolution 13:311–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Tsunewaki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumaret, R., Bowman, C.M. & Dyer, T.A. Autopolyploidy in Dactylis glomerata L.: further evidence from studies of chloroplast DNA variation. Theoret. Appl. Genetics 78, 393–399 (1989). https://doi.org/10.1007/BF00265302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00265302

Key words

Navigation