Skip to main content
Log in

The unsteadiness of shock waves propagating through gas-particle mixtures

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying.

A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements.

To compare the experiments with theoretical results, calculations were performed by the random-choice method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

velocity of sound

c :

specific heat of particles

c p :

specific heat of the gas at constant pressure

c v :

specific heat of the gas at constant volume

c D :

drag coefficient

D p :

particle diameter

F p :

drag force

m p :

particle flow rate

m G :

gas flow rate

\(Ms = \frac{{u_s }}{{a_1 }}\) :

shock Mach number

M s0 :

initial shock Mach number

Nu :

Nusselt number

p :

pressure

Pr :

Prandtl number

Q p :

heat transfer

R :

gas constant

Re :

Reynolds number

t :

time

T :

temperature

u :

flow velocity

u s :

shock wave velocity

χ:

coordinate

γ:

ratio of the specific heats of the gas

δ:

ratio of the specific heats of the particles and the gas

ɛ:

volume fraction of the particles

ν:

loading ratio

μ:

dynamic viscosity

ϱ:

gas density

ϱ p :

density of particle material

σ:

particle density in the mixture

E :

equilibrium

e :

equivalent gas

G :

gas

P :

particles

References

  • Chorin, A. J. 1976: Random choice solution of hyperbolic systems. J. Comp. Phys. 22, 517–533

    Google Scholar 

  • Ford, C. A.; Glass, I. I. 1954: An experimental study of shock wave refraction. UTIA Rep. No. 29

  • Higashino, F. 1983: Characteristics method applied to blast waves in a dusty gas. Z. Naturforsch. 38 a, 399–406

    Google Scholar 

  • Ingebo, R. D. 1956: Drag coefficient for droplets and solid spheres in clouds accelerating in air streams. NACA TN 3762

  • Knudsen, J. G.; Katz, D. L. 1958: Fluid Mechanics and Heat Transfer, pp. 511. New York: McGraw-Hill

    Google Scholar 

  • Levine, A. S. 1971: A theoretical analysis of unsteady supersonic gas-particle suspension flows using the Particle-In-Cell method. Ph.D. Thesis, Northeastern University Boston, Massachusetts

    Google Scholar 

  • Marble, F. E. 1970: Dynamics of dusty gases. Ann. Rev. Fluid Mech. 2, 397–446

    Google Scholar 

  • Marconi, F.; Rudman, S.; Calia, V. 1981: Numerical study of one dimensional unsteady particle-laden flows with shock. AIAA J. 19, 1294–1301

    Google Scholar 

  • Miura, H.; Glass, I. I. 1981: On a study-gas shock tube. UTIAS Rep. No. 250

  • Outa, E.; Tajima, K.; Morii, H. 1976: Experiments and analysis on shock wave propagation through a gas-particle-mixture. Bull. JSME 19, 384–394

    Google Scholar 

  • Outa, E.; Tajima, K.; Suzuki, S. 1981: Cross-sectional concentration of particles during shock process propagating through a gas-particle mixture in a shock tube. Proc. 13th Int. Symp. on Shock Tubes and Waves (Ed. Treanor, C. E.; Hall, J. G.), pp. 655–663. Albany, New York: State University of New York Press

    Google Scholar 

  • Rudinger, G. 1964: Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7, 658–663

    Google Scholar 

  • Rudinger, G.; Chang, A. 1964: Analysis of nonsteady two phase flow. Phys. Fluids 7, 1747–1754

    Google Scholar 

  • Rudinger, G. 1970: Effective drag coefficient for gas-particle flow in shock tubes. Trans. ASME, J. Bas. Eng. 92, 165–172

    Google Scholar 

  • Rudinger, G. 1965: Some effects of finite volume on the dynamics of gas-particle mixtures. AIAA J. 3, 1217–1222

    Google Scholar 

  • Saito, T.; Glass, I. 1. 1979: Application of random choice method to problems in shock and detonation wave dynamics. UTIAS Rep. No. 240

  • Satofuka, N.; Tokita, K. 1979: Finite difference calculation of gas-particle flows in shock tubes. Mem. Fac. Ind. Arts, Kyoto Techn. Univ. 28, 28–39

    Google Scholar 

  • Schmitt-v. Schubert, B. 1970: Struktur stationarer Verdichtungsstöße in Gasen mit festen Teilchen ZAMM 50, 671–682

    Google Scholar 

  • Smeets, G.; George, A. 1980: Laser-Doppler-Velozimeter mit einem Michelson-Spektrometer. ISL Bericht R 109/80

  • Sommerfeld, M.; Grönig, H. 1983 a: Grenzschichten in Gas-Teilchen-Strömungen hinter Stoßwellen. Forschungsbericht des Landes NRW Nr. 3171

  • Sommerfeld, M.; Grönig, H. 1983 b: Decay of shock waves in a dusty gas shock tube with different configurations. Proc. 14th Int. Symp. on Shock Tubes and Waves (Ed. Archer, R. D.; Milton, B. E.). Sydney Shock Tube Symposium Publishers

  • Sommerfeld, M. 1984: Instationäre Stoßwellenausbreitung in Gas-Teilchen-Gemischen. Diss., RWTH Aachen

    Google Scholar 

  • Varma, T. D.; Chopra, N. K. 1967: Analysis of normal shock waves in a gas-particle mixture. ZAMP 18, 650–660

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommerfeld, M. The unsteadiness of shock waves propagating through gas-particle mixtures. Experiments in Fluids 3, 197–206 (1985). https://doi.org/10.1007/BF00265101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00265101

Keywords

Navigation