Skip to main content

Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium

Summary

Root mucilage material (RM) was isolated from maize plants grown in the field, and its affinity to montmorillonite (M) homoionic to Pb2+ and Cd2+ was compared with that of a commercial polygalacturonic acid (PGA). Adsorption isotherms of the commercial and natural materials on the two clay systems were compared in unbuffered systems at pH 3 and pH 6. Adsorption of PGA occurred only at pH 3, and was higher on M-Pb than on M-Cd. In contrast, the adsorption of RM was higher on M-Cd than on M-Pb. Total amounts of RM adsorbed at pH 3 were about 3 times lower on M-Cd and 20 times lower on M-Pb than the respective amounts of PGA adsorbed at the same pH. Polygalacturonic acid had a high content of relatively well dissociated (pKa = 3.5) carboxylic groups, and adsorbed on the clay surface at pH values lower than its pKa. At pH 6, the dissociation of the acid groups favoured its solubility, and the metal cations were then probably displaced by ion exchange. The lower affinity of RM to the clay materials was related to its average molecular weight, which was lower than that of PGA, and to its water solubility, which was higher than that of PGA. The low pH dependence of the adsorption of RM was related to its lower carboxylic acidity and higher content in hydroxyl and amino groups.

This is a preview of subscription content, access via your institution.

References

  • Adrian P, Rouiller J, Portal JM, Andreux F (1986) Confrontation des méthodes de dérivatisation chimiques et protométriques dans la détermination des groupements fonctionnels de polymères organiques extraits de sols. (in preparation)

  • Breisch H, Guckert A, Reisinger O (1975) Etude au microscope électronique de la zone apicale des racines de maïs. Soc Bot Fr, Coll Rhizosphère, pp 55–60

  • Cheshire MV (1977) Origins and stability of soil polysaccharide. J Soil Sci 28:1–10

    Google Scholar 

  • Chenu C (1985) Etude expérimentale des interactions argilespolysaccarides neutres. Contribution à la connaissance des phénomènes d'agrégation biologique dans les sots. Thèse Doctorat, Université Paris VII

  • Clapp CE, Davis RJ, Waugaman SH (1962) The effect of rhizobial polysaccharides on aggregate stability. Proc Soil Sci Soc Am 26:446–469

    Google Scholar 

  • Clapp CE, Emerson WW (1972) Reactions between Ca-montmorillonite and polysaccharides. Soil Sci 114:210–216

    Google Scholar 

  • Cortez J (1975) Adsorption sur les argiles de deux lipopolysaccharides rhizosphériques. Soil Bol Biochem 9:25–32

    Google Scholar 

  • Dart PJ, Mercer FV (1964) The legume rhizosphere. Arch Mikrobiol 47:344–378

    Google Scholar 

  • Floyd RA, Ohlrogge AJ (1970) Gel formation on nodal root surfaces of Zea mays. I. Investigations on the gel composition. Plant and Soil 33:341–343

    Google Scholar 

  • Foster RC (1982) Fine structure of mucigel. New Phytol 91:727–740

    Google Scholar 

  • Guckert A (1973) Contribution à l'étude des polysaccharides dans les sots et de leur rôle dans les mécanismes d'agrégation. These d'Etat Université de Nancy I

  • Guckert A, Valla M, Jacquin F (1975 a) Adsorption of humic acids and soil polysaccharides on montmorillonite. Soviet Soil Sci 85–95 (translated from Pochvovedenie 2:41–47)

    Google Scholar 

  • Guckert A, Breisch H, Reisinger O (1975b) Interface solracine: I. Etude au microscope électronique des relations mucigelargiles-microorganismes. Soil Biol Biochem 7:241–250

    Google Scholar 

  • Guidi G, Petruzzelli G, Giachetti M (1976) Molecular weight as influenced factor on the adsorption of dextrans on sodium and calcium montmorillonite. Z Pflanzenernaehr Bodenkd 140:579–586

    Google Scholar 

  • Harter RD, Stotzky G (1971) Formation of clay-protein complexes. Soil Sci Soc Am Proc 35:383–389

    Google Scholar 

  • Irving HM, Rossotti HS (1954) The calculation of formation curves of metal complexes from titration curves in mined solvants. J Chem Soc 76:2904–2910

    Google Scholar 

  • Jenny H, Grossenbacher K (1963) Root soil boundary zone as seen by electron microscope. Soil Sci Soc Am Proc 27:273–277

    Google Scholar 

  • Jones DD, Morre DJ (1967) Golgi apparatus mediated polysaccaride secretion by outer root cap cells of Zea mays. II. Isolation and characterization of the secretory product. Z Pflanzenernaehr Bodenkd 56:166–169

    Google Scholar 

  • Martin JP (1971) Decomposition and binding action of polysaccharides in soil. Soil Biol Biochem 3:33–41

    Google Scholar 

  • Matsumoto H, Okada K, Kakahashi E (1979) Excretion products of maize roots from seedling to seed development stage. Plant and Soil 53:17–26

    Google Scholar 

  • Mench M (1985) Influence des exsudats racinaires solubles sur la dynamique des métaux dans la rhizosphère du mais (Zea mays L.) Thèse Doctorat, Institut National Polytechnique de Lorraine

  • Mench M, Morel JL, Guckert A (1985) Liaison du cadmium avec la fraction macromoléculaire soluble des exsudats racinaires du mais (Zea mays L.) CR Acad Sci Paris 301:379–382

    Google Scholar 

  • Monnier G (1965) Action des matières organiques sur la stabilité structurale des sols. Th⪻se Docteur Ingénieur, Université Paris

  • Morel JL (1985) Contribution à l'étude des transferts de métaux lourds dans le système sot-plante. Le rôle des mucilages racinaires. Thèse d'Etat, Institut National Polytechnique de Lorraine

  • Morel JL, Guckert A, Mench M, Chavanon M (1983) Etude des interactions entre les products d'exsudation racinaire et les métaux lourds. I. Recherche d'une méthode de mesure de la capacité de liaison métallique des exsudats. Occol Plant 4:363–376

    Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34

    Google Scholar 

  • Mortland MM (1985) Mechanisms of adsorption of non-humic organic components by soil mineral colloids. In: Huang PM, et al (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am J (in press)

  • Parfitt RL, Greenland DJ (1970) Adsorption of polysaccharides by montmorillonite. Soil Sci Soc Am Proc 34:862–866

    Google Scholar 

  • Parfitt RL (1972) Adsorption of charged sugars by montmorillonite. Soil Sci 113:417–421

    Google Scholar 

  • Robert M, Schmidt J (1982) Rôle d'un exopolysaccharide (le xanthéne) dans les associations organo-minérales. C R Acad Sci Paris 294:1031–1036

    Google Scholar 

  • Stevenson FJ (1976) Stability constants of Cu2+, Pb2+ and Cd2+ complexes with humic acids. Soil Sci Soc Am J 40:665–672

    Google Scholar 

  • Stotzky G (1985) Influence of soil mineral colloids on metabolic processes, growth and persistence of microbes and viruses. In: Huang PM et al. (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am J (in press)

  • Theng BKG (1976) Interactions between montmorillonite and fulvic acid. Geoderma 15:243–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morel, J.L., Andreux, F., Habib, L. et al. Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium. Biol Fert Soils 5, 13–17 (1987). https://doi.org/10.1007/BF00264339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00264339

Key words

  • Maize root mucilage
  • Polygalacturonic acid
  • Montmorillonite
  • Lead
  • Cadmium
  • Adsorption isotherms
  • Zea mays