Skip to main content
Log in

Dienelactone hydrolase from Rhodococcus erythropolis 1 CP: purification and properties

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Dienelactone hydrolases (EC 3.1.1.45) have been shown to play an indispensable role in the degradation of chloroaromatic compounds via ortho-cleavage of chlorocatechols. We report on the purification of dienelactone hydrolase of the chlorophenol-utilizing strain Rhodococcus erythropolis 1CP to apparent homogeneity. Dienelactone hydrolase differed fron the corresponding enzymes of other chloroaromatic compound-catabolizing strains in being restricted to substrates with a cis-dienelactone structure. From the cis-dienelactone-hydrolyzing enzyme of a 4-fluorobenzoate-utilizing Burkholderia (Pseudomonas) cepacia strain, it differed considerably in properties such as pH optimum of activity, inhibition by p-chloromercuribenzoate, and amino acid composition. Thus, there is not necessarily a close relationship between substrate specificity and other properties of dienelactone hydrolases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhat MA, Ishida T, Horiike K, Vaidyanathan CS, Nozaki M (1993) Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia DSV90. Arch Biochem Biophys 300:738–746

    Google Scholar 

  • Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104

    Google Scholar 

  • Broderick JB, O'Halloran TV (1991) Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30:7349–7358

    Google Scholar 

  • Cornish-Bowden A (1983) Relating proteins by amino acid composition. Methods Enzymol 91:60–75

    Google Scholar 

  • Dorn E, Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174:73–84

    Google Scholar 

  • Dorn E, Knackmuss H-J (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    Google Scholar 

  • Engesser KH, Fischer P (1991) Degradation of haloaromatic compounds. In: Betts WB (ed) Biodegradation: natural and synthetic materials. Springer, Berlin Heidelberg, New York, pp 15–54

    Google Scholar 

  • Frantz B, Ngai K-L, Chatterjee DK, Ornston LN, Chakrabarty AM (1987) Nucleotide sequence and expression of clcD, a plasmidborne dienelactone hydrolase gene from Pseudomonas sp. strain B13. J Bacteriol 169:704–709

    Google Scholar 

  • Gorlatov SN, Maltseva OV, Shevchenko VI, Golovleva LA (1989) Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Mikrobiologiya 58: 802–806. Microbiology 58:647–651

    Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Google Scholar 

  • Harnett GB, Ornston LN (1994) Acqusition of apparent DNA slippage structures during extensive evolutionary divergence of pcaD and catD genes encoding identical catalytic activities in Acinetobacter calcoaceticus. Gene 142:23–39

    Google Scholar 

  • Hinteregger C, Loidl M, Streichsbier F (1992) Characterization of isofunctional ring-cleaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol Lett 97:261–266

    Google Scholar 

  • Kaschabek SR, Reineke W (1992) Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol 158:412–417

    Google Scholar 

  • Knackmuss H-J, Hellwig M, Lackner H, Otting W (1976) Cometabolism of 3-methylbenzoate and methylcatechols by a chlorobenzoate-utilizing Pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid. Eur J Appl Microbiol 2:267–276

    Google Scholar 

  • Kuhm AE, Schlömann M, Knackmuss H-J, Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem J 266: 877–883

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Maltseva OV, Solyanikova IP, Golovleva LA (1991) Catechol 1,2-dioxygenases of a chlorophenol-degrading strain of Rhodococcus erythropolis: purification and properties. Biokhimiya 56: 2188–2197; Biochemistry 56:1548–1555

    Google Scholar 

  • Marchalonis JJ, Weltman JK (1971) Relatedness among proteins: a new method of estimation and its application to immunoglobulins. Comp Biochem Physiol 38:609–625

    Google Scholar 

  • Meer RN van der, Eggen RIL, Zehnder AJB, Vos WM de (1991) Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173:2425–2434

    Google Scholar 

  • Merril CR, Goldmann D, Sedman SA, Ebert MH (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438

    Google Scholar 

  • Miguez CB, Greer CW, Ingram JM (1993) Purification and properties of chlorocatechol 1,2-dioxygenase from Alcaligenes denitrificans BRI 6011. Can J Microbiol 39:1–5

    Google Scholar 

  • Ngai K-L, Schlömann M, Knackmuss H-J, Ornston LN (1987) Dienelactone hydrolase from Pseudomonas sp. strain B13. J Bacteriol 169:699–703

    Google Scholar 

  • Ornston LN (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 2. Enzymes of the protocatechuate pathway. J Biol Chem 241:3787–3794

    Google Scholar 

  • Ornston LN, Stanier RY (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. I. Biochemistry. J Biol Chem 241:3776–3786

    Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O, Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–2359

    Google Scholar 

  • Pieper DH, Reineke W, Engesser K-H, Knackmuss H-J (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxy-acetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150:95–102

    Google Scholar 

  • Pieper DH, Kuhm AE, Stadler-Fritzsche K, Fischer P, Knackmuss H-J (1991) Metabolism of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. Arch Microbiol 156:218–222

    Google Scholar 

  • Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    Google Scholar 

  • Reineke W, Knackmuss H-J (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287

    Google Scholar 

  • Schlömann M (1988) Die verschiedenen Typen der Dienlacton-Hydrolase und ihre Rolle beim bakteriellen Abbau von 4-Fluorbenzoat. Ph.D. Thesis, Universität Stuttgart

  • Schlömann M, Fischer P, Schmidt E, Knackmuss H-J (1990a) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol 172:5119–5129

    Google Scholar 

  • Schlömann M, Pieper DH, Knackmuss H-J (1990b) Enzymes of haloaromatics degradation: variations of Alcaligenes on a theme by Pseudomonas. In: Silver S, Chakrabarty AM, Iglewsky B, Kaplan S (eds) Pseudomonas: biotransformations, pathogenesis and evolving biotechnology. American Society for Microbiology, Washington, DC, pp 185–196

    Google Scholar 

  • Schlömann M, Schmidt E, Knackmuss H-J (1990c) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol 172:5112–5118

    Google Scholar 

  • Schlömann M, Ngai K-L, Ornston LN, Knackmuss H-J (1993) Dienelactone hydrolase from Pseudomonas cepacia. J Bacteriol 175:2994–3001

    Google Scholar 

  • Schmidt E, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347

    Google Scholar 

  • Schmidt E, Remberg G, Knackmuss H-J (1980) Chemical structure and biodegradability of halognated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192: 331–337

    Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss H-J (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39:58–67

    Google Scholar 

  • Schwien U, Schmidt e, Knackmuss H-J, Reineke W (1988) Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13: fate of 3,5-dichlorocatechol. Arch Microbiol 150:78–84

    Google Scholar 

  • Shanley MS, Harrison A, Parales RE, Kowalchuk G, Mitchell DJ, Ornston LN (1994) Unusual G+C content and codon usage in catIJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. Gene 138:59–65

    Google Scholar 

  • Solyanikova IP, Maltseva OV, Golovleva LA (1992) Purification and properties of catechol 1,2-dioxygenase II from Pseudomonas putida strain 87. Biokhimiya 57: 1883–1891; Biochemistry 57:1310–1316

    Google Scholar 

  • Vollmer MD, Schlömann M (1994) Chloromuconate cycloisomerases: relatively specific enzymes with a distinct preference for substituted muconates (abstract). Bioengineering 10:83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Maltseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltseva, O.V., Solyanikova, I.P., Golovleva, L.A. et al. Dienelactone hydrolase from Rhodococcus erythropolis 1 CP: purification and properties. Arch. Microbiol. 162, 368–374 (1994). https://doi.org/10.1007/BF00263786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00263786

Key words

Navigation