Skip to main content
Log in

Trans-cis isomerization of retinal and a mechanism for ion translocation in halorhodopsin

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The chromophore in halorhodopsin (HR) which acts as a light-driven chloride pump in halobacteria shares many properties with its counterpart in bacteriorhodopsin (BR): (i) a similar retinal protein interaction, (ii) trans to cis isomerization and (iii) similar intermediates of its photocycle. One major difference between the two chromoproteins is that the HR chromophore does not become deprotonated during its photocycle. A mechanism for the photocycle of HR is presented, which, in close analogy to an earlier proposed mechanism for BR, involves the sequence of all-trans → 13-cis, 14s-cis → 13-cis → all-trans isomerizations of the chromophore, a Schiff base of retinal. In contrast to the situation in BR the 13-cis, 14s-cis→13-cis isomerization is induced not by deprotonation of the retinal Schiff base chromophore but rather by the movement of an anion (Cl-) towards the protonated nitrogen of the Schiff's base. The suggested mechanism involves the Schiff base directly in the chloride translocation in halorhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alshuth T, Stockburger M, Hegemann P, Oesterhelt D (1985) Structure of the retinal chromophore in halorhodopsin. FEBS Lett 179:55–59

    Google Scholar 

  • Ariki M, Schobert B, Lanyi J (1986) Effects of arginine modification on the halorhodopsin photocycle. Biophys J 49: 476a

  • Aton B, Doukas AG, Callender RH, Becher B, Ebrey TG (1977) Resonance Raman studies of the purple membrane. Biochemistry 16:2995–2999

    Google Scholar 

  • Bamberg E, Hegemann P, Oesterhelt D (1984a) The chromoprotein of halorhodopsin is the light-driven electrogenic chloride pump in Halobacterium halobium. Biochemistry 23:6216–6221

    Google Scholar 

  • Bamberg E, Hegemann P, Oesterhelt D (1984b) Reconstitution of the light-driven electrogenic ion pump halorhodopsin in black lipid membranes. Biochim Biophys Acta 773: 53–60

    Google Scholar 

  • Bogomolni RA, Belliveau, JW, Weber HJ (1981) Salt dependent spectral transition of Halobacterium pigment P588. Biophys J 33:217a (Abstr. T-pm-f4)

  • Braiman M, Mathies R (1980) Resonance Raman evidence for an all-trans to 13-cis isomerization in the proton-pumping cycle of bacteriorhodopsin. Biochemistry 19:5421–5428

    Google Scholar 

  • Brock CJ, Tanner MJA, Kempf C (1983) The human erythrocyte anion transport protein. Partial amino acid sequence conformation and a possible molecular mechanism. Biochem J 213:577–586

    Google Scholar 

  • Falke JJ, Chan SI, Steiner M, Oesterhelt D, Towner P, Lanyi JK (1984) Halide binding by the purified halorhodopsin chromoprotein. II. New chloride binding sites revealed by 35-Cl NMR. J Biol Chem 259:2185–2189

    Google Scholar 

  • Gärtner W, Towner P, Hopf H, Oesterhelt D (1983) Removal of methyl groups from retinal and its influence on the function of bacteriorhodopsin. Biochemistry 22:2637–2644

    Google Scholar 

  • Gerwert K, Siebert F (1986) Evidence for a light-induced 13-cis, 14s-cis isomerization in bacteriorhodopsin obtained by FITR difference spectroscopy using isotopically labelled retinals. EMBO J 5:805–811

    Google Scholar 

  • Gödecke M-E (1976) Identifizierung der bei der Umsetzung von Bakteriorhodopsin mit Hydroxylamin erhaltenen Produkte. Diplomarbeit, Würzburg

  • Harbison GS, Smith SO, Pardoen JA, Courtin JML, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1985) Solid state 13C-NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry 24:6955–6962

    Google Scholar 

  • Hazemoto N, Kamo N, Kobatake Y, Tsuda M, Terayama Y (1984) Effect of salt on photocycle and ion-pumping of halorhodopsin and third rhodopsinlike pigment of Halobacterium halobium. Biophys J 45:1073–1077

    Google Scholar 

  • Hegemann P (1984) Halorhodopsin, die lichtgetriebene Chloridpumpe in Halobacterium halobium. Dissertation, Universität München

  • Hegemann P, Oesterhelt D, Steiner M (1985) The photocycle of the chloride pump halorhodopsin. I. Azide catalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. EMBO J 4:2347–2350

    Google Scholar 

  • Honig B, Greenberg AD, Dinur U, Ebrey TG (1976) Visulapigment spectra: implications of the protonation of the retinal Schiff base. Biochemistry 15:4993–4999

    Google Scholar 

  • Lanyi JK (1984) Light-dependent trans to cis isomerization in halorhodopsin. FEBS Lett 175:337–342

    Google Scholar 

  • Lanyi JK, Oesterhelt D (1982) Identification of the retinal-binding protein in halorhodopsin. J Biol Chem 257: 2674–2677

    Google Scholar 

  • Lanyi JK, Vodyanoy V (1986) Flash spectroscopic studies of the kinetics of the halorhodopsin photocycle. Biochemistry 25:1465–1470

    Google Scholar 

  • Oesterhelt D, Meentzen M, Schuhmann L (1973) Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans retinal as its chromophores. Eur J Biochem 40:453–463

    Google Scholar 

  • Oesterhelt D, Hegemann P, Tittor J (1985) The photocycle of the chloride pump halorhodopsin. II. Quantum yields and a kinetic model. EMBO J 4:2351–2356

    Google Scholar 

  • Ogurusu T, Maeda A, Sasaki N, Yoshizawa T (1982) Effects of chloride on the absorption spectrum and photoreactions of halorhodopsin. Biochim Biophys Acta 682:446–451

    Google Scholar 

  • Ogurusu T, Maeda A, Sasaki N, Yoshizawa T (1981) Light-induced reaction of halorhodopsin prepared under low salt conditions. J Biochem (Tokyo) 90:1267–1273

    Google Scholar 

  • Orlandi G, Schulten K (1979) Coupling of stereochemical and proton donor-acceptor properties of Schiff base. A model of light-driven proton pump. Chem Phys Lett 64:370–374

    Google Scholar 

  • Polland H-J (1984) Die ersten Schritte der Photosynthese in den retinalhaltigen Proteinen Bakteriorhodopsin und Halorhodopsin. Dissertation, Technische Universität München

  • Polland H-J, Franz MA, Zinth W, Kaiser W, Hegemann P, Oesterhelt D (1985) Picosecond events in the photochemical cycle of the light-driven chloride-pump halorhodopsin. Biophys J 47:55–59

    Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    Google Scholar 

  • Schobert B, Lanyi JK, Oesterhelt D (1986) Effects of anion binding on the deprotonation reactions of halorhodopsin. J Biol Chem 261:2690–2696

    Google Scholar 

  • Schulten K, Tavan P (1978) A mechanism for the light-driven proton pump of Halobacterium halobium. Nature 272: 85–86

    Google Scholar 

  • Schulten K, Schulten Z, Tavan P (1984) An isomerization model for the pump cycle of bacteriorhodopsin. In: Bolis L (ed). Information and energy transduction in biological membranes. Alan R Liss, New York, pp 113–131

    Google Scholar 

  • Sheves M, Baasov T (1984) Factors affecting the rate of thermal-isomerization of 13-cis-bacteriorhodopsin to all-trans. J Am Chem Soc 106:6840–6841

    Google Scholar 

  • Smith SO, Marvin MJ, Bogomolni RA, Mathies, RA (1984) Structure of the retinal chromophore in the HR578 form of halorhodopsin. J Biol Chem 259:12326–12329

    Google Scholar 

  • Smith SO, Lugtenburg J, Mathies R (1985) Determination of retinal chromophore structure in bacteriorhodopsin with Resonance Raman spectroscopy. J Memb Biol 85:95–109

    Google Scholar 

  • Spudich JL, McCain DA, Nakanishi K Okabe M, Shimizu N, Rodman H, Honig B, Bogomolni RA (1986) Chromophore-protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Biophys J 49:479–483

    Google Scholar 

  • Steiner M, Oesterhelt D (1983) Isolation and properties of the native chromoprotein halorhodopsin. EMBO J 2:1379–1385

    Google Scholar 

  • Steiner M, Oesterhelt D, Ariki M, Lanyi JK (1983) Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. J Biol Chem 259:2179–2184

    Google Scholar 

  • Tavan P, Schulten K (1986) Evidence for a 13,14-cis cycle in bacteriorhodopsin. Biophys J (in press)

  • Tavan P, Schulten K, Oesterhelt D (1985a) The effect of protonation and electrical interactions on the stereochemistry of retinal Schiff bases. Biophys J 47:415–430

    Google Scholar 

  • Tavan P, Schulten K, Gärtner W, Oesterhelt D (1985b) Substituents at the C-13 position of retinal and their influence on the function of bacteriorhodopsin. Biophys J 47: 349–355

    Google Scholar 

  • Thiel W (1981) The MNDOC method, a correlated version of the MNDO model. J Am Chem Soc 103:1413–1419

    Google Scholar 

  • Weber HJ, Bogomolni RA (1981) A second retinal-containing pigment in Halobacterium halobium. Photochem Photobiol 33:601–608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oesterhelt, D., Hegemann, P., Tavan, P. et al. Trans-cis isomerization of retinal and a mechanism for ion translocation in halorhodopsin. Eur Biophys J 14, 123–129 (1986). https://doi.org/10.1007/BF00263069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00263069

Key words

Navigation