Skip to main content
Log in

The relationship between CO2-assimilation rate, Rubisco carbamylation and Rubisco activase content in activase-deficient transgenic tobacco suggests a simple model of activase action

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA1P:

2′-carboxyarabinitol-1-phosphate

Pipa :

intercellular, ambient partial pressure of CO2

PGA:

3-phospho-glycerate

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose-1,5-bisphosphate

SSU:

small subunit of Rubisco

References

  • Andrews TJ, Lorimer GH (1987) Rubisco: Structure, mechanisms and prospects for improvement. In: Hatch MD, Boardman NK, (eds) The Biochemistry of plants. Academic Press, New York, pp 132–219

    Google Scholar 

  • Andrews TJ, Hudson GS, Mate CJ, von Caemmerer S, Evans JR, Arvidsson YBC (1995) Rubisco: The consequences of altering its expression and activation in transgenic plants. J Exp Bot, in press

  • Badger MR, Sharkey TD, von Caemmerer S (1984) The relationship between steady-state gas exchange of leaves and the levels of carbon reduction cycle intermediates. Planta 160: 305–313

    Article  CAS  PubMed  Google Scholar 

  • Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD (1988) Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressure of carbon dioxide. Plant Physiol 88: 1418–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butz ND, Sharkey TD (1989) Activity ratios of ribulose bisphosphate carboxylase accurately reflect carbamylation ratios. Plant Physiol 89: 735–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmondson DL, Badger MR, Andrews TJ (1990) Slow inactivation of ribulosebisphosphate carboxylase during catalysis is caused by accumulation of a slow, tight-binding inhibitor at the catalytic site. Plant Physiol 93: 1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with reduced content of Rubisco. Aust J Plant Physiol 21: 475–495

    Article  CAS  Google Scholar 

  • Farquhar GD (1979) Models describing the kinetics of ribulose bisphosphate carboxylase-oxygenase. Arch Biochem Biophys 193: 456–468

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic responses to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encylopedia of plant physiol NS, vol 12B: Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin, pp 549–587

    Google Scholar 

  • Hewitt EJ, Smith TA, (1975) Plant mineral nutrition. English University Press

  • Hudson GS, Evans JR, von Caemmerer S, Arvidsson YBC, Andrews TJ (1992) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiol 98: 294–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CZ, Quick WP, Alred R, Kleibenstein D, Rodermel RS (1994) Antisense-RNA inhibition of rubisco activase expression. Plant J 5: 787–789

    Article  CAS  Google Scholar 

  • Jordan DB, Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose-1,5-bisphosphate. J Biol Chem 258: 13752–13758

    CAS  PubMed  Google Scholar 

  • Laing WA, Christeller JT (1976) A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J 159: 563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan Y, Mott KA (1991) Determination of apparent Km values for RuBP carboxylase/oxygenase activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95: 604–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose 1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15: 529–536

    Article  CAS  PubMed  Google Scholar 

  • Mate CJ, Hudson GS, von Caemmerer S, Evans JR, Andrews TJ (1993) Reduction of ribulose carboxylase activase levels in tobacco (Nicotiana tabacum) by antisense RNA reduces ribulose bisphosphate carboxylase carbamylation and impairs photosynthesis. Plant Physiol 102: 1119–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott KA, Jensen RG, O'Leary JW, Berry JA (1984) Photosynthesis and ribulose 1,5-bisphosphate concentrations in intact leaves of Xanthium strumarium L. Plant Physiol 76: 968–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Yu J-W, Kell P, Harrison K, Gallagher A, Badger MR (1995) The effect of a specific reduction of chloroplast glyceraldehyde dehydrogenase activity by antisense RNA in transgenic tobacco plants on photosynthetic CO2 assimilation. Planta 195: 369–378

    Article  CAS  PubMed  Google Scholar 

  • Portis AR, Jr. (1990) Rubisco activase. Biochim Biophys Acta 1015: 15–28

    Article  CAS  PubMed  Google Scholar 

  • Portis AR, Jr., Salvucci ME, Ogren WL (1986) Activation of ribulose bisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by rubisco activase. Plant Physiol 82: 967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quick WP, Schurr U, Scheibe R, Schulze E-D, Rodermel SR, Bogorad L, Stitt M (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcs. I Impact on photosynthesis in ambient growth conditions. Planta 183: 542–554

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Portis AR, Jr. (1988) Release of the nocturnal inhibitor, carboxyarabinitol-1-phosphate, from ribulose bisphosphate carboxylase/oxygenase by rubisco activase. FEBS Lett 233: 313–416

    Article  Google Scholar 

  • Salvucci ME (1992) Subunit interactions of Rubisco activase: Polyethylene glycol promotes self-association, stimulates ATPase and activation activities and enhances interactions with Rubisco. Arch Biochem Biophys 298: 688–696

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Portis AR, Jr., Ogren WL (1985) A soluble chloroplast protein catalyzes ribulose-bisphosphate carboxylase/oxygenase activation in vivo. Photosynth Res 7: 193–201

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Portis AR, Jr., Ogren WL (1986) Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves. Plant Physiol 80: 655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seemann JR, Berry JA, Freas SM, Krump MA (1985) Regulation of ribulose-bisphosphate carboxylase activity in vivo by a light-modulated inhibitor of catalysis. Proc Natl Acad Sci USA 82: 8024–8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servaites JC (1990) Inhibition of ribulose 1,5-bisphosphate carboxylase/oxygenase by 2-carboxyarabinitol-1-phosphate. Plant Physiol 92: 867–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville CR, Portis AR, Jr., Ogren WL (1982) A mutant of Arabidopsis thaliana which lacks activation of RuBP carboxylase in vivo. Plant Physiol 70: 381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streusand VJ, Portis AR, Jr. (1987) Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase. Plant Physiol 85: 152–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S, Edmondson DL (1986) Relationship between steady-state gas exchange, in vivo ribulose bisphosphate carboxylase activity and some carbon reduction cycle intermediates in Raphanus sativus. Aust J Plant Physiol 13: 669–688

    Article  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195: 88–97

    Article  Google Scholar 

  • Vu CV, Allen LH, Bowes G (1984) Dark/Light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories. Plant Physiol 76: 843–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Portis AR, Jr. (1992) Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP. Plant Physiol 99: 1348–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Snyder GW, Esau BD, Portis AR, Jr., Ogren WL (1992) Species-dependent variation in the interaction of substratebound ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase. Plant Physiol 100: 1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal coductance correlates with photosynthetic capacity. Nature 282: 424–426

    Article  Google Scholar 

  • Zhu G, Jensen RG (1991) Fallover of ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Decarbamylation of catalytic sites depends on pH. Plant Physiol 97: 1354–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne von Caemmerer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mate, C.J., von Caemmerer, S., Evans, J.R. et al. The relationship between CO2-assimilation rate, Rubisco carbamylation and Rubisco activase content in activase-deficient transgenic tobacco suggests a simple model of activase action. Planta 198, 604–613 (1996). https://doi.org/10.1007/BF00262648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262648

Key words

Navigation