Skip to main content
Log in

Circulation, metabolic rate, and body size in mammals

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

This paper attempts to explain Kleiber's rule, which relates metabolic rate of mammals to their body mass, from the structure and function of the blood circulation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

scaling factor

Δ:

fractal dimension

Δ:

hydrodynamic conductivity

l n :

length of an arterial blood vessel at bifurcation level n

M :

body mass

N :

maximal number of bifurcation levels

p :

pressure

Q :

flow

r :

size of Bohr effect

r n :

radius of an arterial blood vessel at bifurcation level n

V :

volume

VO 2 :

rate of oxygen unloading

Z n :

number of arterial blood vessels at bifurcation level n

References

  • Altmann PL, Dittmer DS (ed) (1964) Biology data book. Fed Am Soc Exp Biol

  • Barbee JH, Cokelet GR (1971) The Fahraeus effect. Microvasc Res 3: 6–16

    Google Scholar 

  • Barbee JH, Cokelet GR (1971) Prediction of blood flow in tubes with diameters as small as 29 μ. Microvasc Res 3: 17–21

    Google Scholar 

  • Buddenbrock W von (1967) Vergleichende Physiologie Bd 6: Blut und Herz. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Burton AC (1972) Physiology and biophysics of the circulation: An introductory text. 2nd ed, Year Book Medical Publishers Inc., Chicago

    Google Scholar 

  • Duncker HR, Günthert M (1985) The quantitative design of the avian respiratory system — from hummingbird to mute swan. BIONA report 3: 361–378

    Google Scholar 

  • Duncker HR (1991) Constructional and ecological prerequisites for the evolution of homeothermy. In: Schmidt-Kittler N (ed) Constructional morphology and biomechanics: concepts and implications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eckert R, Randall D (1983) Animal physiology, mechanisms, and adaptation. 2nd ed, Freeman and Co., San Francisco

    Google Scholar 

  • Fahreus R, Lindquist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96: 562–568

    Google Scholar 

  • Fung YC (1984) Biomechanics: Mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Fung YC (1981) Biodynamics: circulation. Springer, New York

    Google Scholar 

  • Groat RA (1948) Relationship of volumetric rate of blood flow to arterial diameter. Fed Proc 7: 45

    Google Scholar 

  • Hargens AR, Millard RW, Pettersson K, Johansen K (1987) Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329: 59–60

    Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces and its evolution. Rep Steno Memorial Hosp Nord Insulinlab 9: 1–110

    Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6: 315–353

    Google Scholar 

  • Kleiber M (1961) The fire of life. An introduction to animal energetics. Wiley, New York

    Google Scholar 

  • Krebs HA (1950) Body size and tissue respiration. Biochim Biophys Acta 4: 249–269

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman and Co, New York, p. 157

    Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 179: 1201–1204

    Google Scholar 

  • Prothero JW (1979) Maximal oxygen consumption in various animals and plants. Biochem Physiol 64 A: 463–466

    Google Scholar 

  • Riggs A (1960) The nature and significance of the Bohr effect in mammalian hemoglobins. J Gen Physiol 43: 737–752

    Google Scholar 

  • Rubner M (1883) Über den Einfluß der Körpergröße auf Stoff- und Kraftwechsel. Z Biol 19: 535–562

    Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: Adaptation and environment. 3rd ed. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: Why is animals size so important? Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K, Larimer J (1958) Oxygen dissociation curves of mammalian blood in relation to body size. Am J Physiol 195: 424–428

    Google Scholar 

  • Sernetz M, Gelléri B, Hofmann J (1985) The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. J Theor Biol 117: 209–230

    Google Scholar 

  • Stahl WR (1965) Organ weights in primates and other mammals. Science 150: 1039–1042

    Google Scholar 

  • Stahl WR (1967) Scalling of respiratory variables in mammals. J Appl Physiol 22: 453–460

    Google Scholar 

  • Suwa N, Takahashi T (1971) Morphological and morphometrical analysis of circulation in hypertension and ischemic kidney. Urban and Schwarzenberg, München

    Google Scholar 

  • Taylor CR (1982) Scaling limits of metabolism to body size: Implications for animal design. In: Taylor RC Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian resiratory system. I. Problem and Strategy. Resp Physiol 44: 1–10

    Google Scholar 

  • Taylor CR, Maloiy GMO, Weibel ER, Langman VA, Kamau JMZ, Seeherman HJ, Heglund NC (1981) Design of the mammalian respiratory system: Scaling maximum aerobic capacity to body mass — wild and domestic mammals. Resp Physiol 44: 25–38

    Google Scholar 

  • Thoma R (1901) Über den Verzweigungsmodus der Arterien. Arch Entwicklungsmech 12: 352–413

    Google Scholar 

  • Weis-Fogh T, Alexander R McN (1977) The sustained power output from striated muscle. In: Pedley T (ed) Scale effects in animal locomotion. Academic Press, London New York San Francisco

    Google Scholar 

  • Wieser W (1984) A distinction must be made between the ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Resp Physiol 55: 1–9

    Google Scholar 

  • Wieser W (1986) Bioenergetik: Energietransformationen bei Organismen. Thieme, Stuttgart

    Google Scholar 

  • Wilkie D (1977) Metabolism and body size. In: Pedley T (ed) Scale effects in animal locomotion. Academic Press, London New York San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spatz, HC. Circulation, metabolic rate, and body size in mammals. J Comp Physiol B 161, 231–236 (1991). https://doi.org/10.1007/BF00262303

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262303

Key words

Navigation