Biology and Fertility of Soils

, Volume 5, Issue 4, pp 288–294 | Cite as

The hormone-like effect of earthworm casts on plant growth

  • U. Tomati
  • A. Grappelli
  • E. Galli


The fertilizing effect of earthworm casts depends on microbial metabolites, mainly growth regulators. The hormone-like effect of earthworm casts is discussed with reference to the literature and ad hoc experiments. When used in plant propagation, earthworm casts promote root initiation and root biomass and increase root percentage. When applied as a casing layer, earthworm casts stimulate carpophore formation in Agaricus bisporus, and N assimilation. When used in horticulture, earthworm casts have a hormone-like effect, influencing the development and precociousness of plants or inhibiting them. These effects are dependent on dose, application time and plant species. In addition, results recorded on dwarfing, stem elongation and precociousness of flowering suggest that the biological effect of earthworm casts is linked to microbial metabolites that influence plant metabolism, growth and development.

Key words

Earthworm casts Microbial metabolites Growth regulators Hormone-like effect Root biomass Carpophore formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldag R, Graff O (1974) Influence of earthworm activity on protein content and protein quality in oat seedlings. Landwirtsch Forsch 31:277–284Google Scholar
  2. Aldag R, Graff O (1975) N-Fraktionen in Regenwurmlösung und deren Ursprungsboden. Pedobiologia 15:151–153Google Scholar
  3. Anderson JM, Ineson P, Huish SA (1983) Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodland. Soil Biol Biochem 15:463–467Google Scholar
  4. Atlavinyte O (1974) Effect of earthworms on the biological productivity of barley. Institute of Zoology and Parasitology, Academy of Sciences, Lithuania 1 (65):69–79Google Scholar
  5. Atlavinyte O, Daciulyte J (1969) The effect of earthworms on the accumulation of vitamin B12 in soil. Pedobiologia 9:165–170Google Scholar
  6. Atlavinyte O, Daciulyte J, Lugauskas A (1971) Correlation between the number of earthworms, microorganisms and vitamin B12 in soil fertilized with straw. Liet TSR Mokslu Akad Darb Ser B 3:43–56Google Scholar
  7. Barley KP, Jennings AC (1959) Earthworms and soil fertility: III. The influence of earthworms on the availability of nitrogen. Aust J Agric Res 10:364–370Google Scholar
  8. Barton LL, Ruocco JJ (1981) Soluble humic complexes and sulphate uptake by Aspergillus niger. Soil Biol Biochem 13:435–437Google Scholar
  9. Bhatnagar T (1975) Lombriciens et humification: Un aspect nouveau de l'incorporation microbienne d'azote induite par les vets de terre. In: Kilbertus G, Reisinger O, Mourey A, Cancela de Fonseca JA (eds) Biodégradation et humification. Pierron, Sarreguemines, pp 169–182Google Scholar
  10. Bouche MB (1975) Action de la faune sur les états de la matière organique dans les écosystèmes. In: Kilbertus G, et al (eds) Biodégradation et humification. Pierron, Sarreguemines, pp 157–168Google Scholar
  11. Brian PW, Grove JF, MacMillan J (1960) Gibberellins. Fortschr Chem Org Naturst 18:350–433Google Scholar
  12. Brown ME (1975) Rhizosphere micro-organisms — Opportunists, bandits or benefactors. In: Walker N (ed) Soil microbiology. Butterworths, London, Boston, pp 21–38Google Scholar
  13. Cacciari I, Grappelli A, Lippi D, Pietrosanti W (1980) Effect of growth rate on the production of phytohormone-like substances by an Arthrobacter sp. in chemostat culture. J Gen Microbiol 118:549–551Google Scholar
  14. Carr DJ (ed) (1972) Plant growth substances 1970. Proceedings of the 7th International Conference on Plant Growth Substances. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Citernesi U, Neglia R, Seritti A, Lepidi AA, Filippi C, Bagnoli G, Nuti MP, Galluzzi R (1977) Nitrogen fixation in the gastroenteric cavity of soil animals. Soil Biol Biochem 9:71–72Google Scholar
  16. Curto S, Favilli F (1971) Stimulative effect of certain microorganisms (bacteria, yeasts, microalgae) upon fruitbody formation of Agaricus bisporus (Lange) Sing. Mushroom Sci 8:67–74Google Scholar
  17. Dash MC, Patra UC (1979) Wormcast production and nitrogen contribution to soil by a tropical earthworm population from a grassland site in Orissa, India. Rev Ecol Biol Sol 16:79–83Google Scholar
  18. Dell'Agnola G, Ferrari G, Nardi S (1981) Antidote action of humic substances on atrazine inhibition of sulphate uptake in barley roots. Pest Biochem Physiol 15:101–104Google Scholar
  19. Diem HG, Dommergues YR (1980) Significance and improvement of rhizospheric N2 fixation. In: Subba Rao NS (ed) Recent advances in biological nitrogen fixation. Oxonian Press, India, pp 190–226Google Scholar
  20. Dubash PJ, Ganti SS (1964) Earthworms and amino acids in soil. Curr Sci (Bangalore) 33:219–220Google Scholar
  21. Edwards CA (1967) Macroarthropods. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition, vol 2. Academic Press, New York, pp 533–554Google Scholar
  22. Edwards CA (1980) Earthworms, soil fertility and plant growth. In: Appelhof M (ed) Proceedings: Workshop on the Role of Earthworms in the Stabilization of Organic Residues. Beech Leaf Press, Kalamazoo, Mich, pp 61–85Google Scholar
  23. Edwards CA (1983) Utilization of earthworm compost as plant growth media. In: Tomati U, Grappelli A (eds) Proceedings of International Symposium on Agricultural and Environmental Prospects in Earthworm Farming, Rome, Tipolitografia Euromodena, pp 57–66Google Scholar
  24. Edwards CA (1985) The use of earthworms for management of organic wastes. In: International Symposium on Earthworms, Bologna-Carpi, Italy, 31 March–5 April 1985, Collana U.Z.I., (Selected symposia, no 1)Google Scholar
  25. Edwards CA, Lofty JR (1978) The influence of arthropods and earthworms upon the root growth of cereals after five seasons of direct drilling. J Appl Ecol 15:789–795Google Scholar
  26. Edwards CA, Lofty JR (1980) Effect of earthworm inoculation upon the root growth of direct drilled cereals. J Appl Ecol 17:533–543Google Scholar
  27. Eger G (1961) Untersuchungen über die Funktion der Deckschicht bei der Fruchtkörperbildung des Kulturchampignons Psalliota bispora Lg. Arch Microbiol 39:313–334Google Scholar
  28. Eger G (1972) Experiments and comments on the action of bacteria on sporophore initiation in Agaricus bisporus. Mushroom Sci 8:719–725Google Scholar
  29. Eitminaviciute I, Bagdanaviciene Z, Budaviciene I, Atlavinyte O, Liepinis A, Strazdiene V, Sukackiene I, Slepetiene J (1971) Untersuchungen der Beziehungen zwischen Gruppen von wirbellosen Lebewesen und Mikroorganismen der B-Vitamingruppe in unterschiedlichen Böden. In: d'Aguilar J (ed) Institut National des Recherches Agriculturelles, Paris, pp 71–77 (Colloquien Pedobiologicae, no IV)Google Scholar
  30. Ellis FB, Elliott JG, Barnes CT, House KR (1977) Comparison of direct drilling, reduced cultivation and ploughing on the growth of cereals. J Agric Sci 89:631–642Google Scholar
  31. French JRJ, Turner GL, Bradbury JF (1976) Nitrogen fixation by bacteria from the hindgut of termites. J Gen Microbiol 95:202–206Google Scholar
  32. Galli E, Grappelli A, Tomati U (1986) Wheat responses to different microbial converted waste. XIV International Congress of Microbiology, 7–13 September 1983, Manchester, EnglandGoogle Scholar
  33. Gavrilov K (1963) Earthworms, producers of biologically active substances. Zh Obshch Biol 24:149–154Google Scholar
  34. Giovannozzi-Sermanni G, Grappelli A, Cacciari I, Pietrosanti W (1976) Influence of Arthrobacter sp. on microflora, phytohormones of the compost and on sporophore formation of Agaricus bisporus. Ann Microbiol 26:129–138Google Scholar
  35. Goodwin PB (1978) Phytohormones and growth and development of organs of the vegetative plant. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise. Elsevier North-Holland, Amsterdam Oxford New York, pp 31–173Google Scholar
  36. Graff O, Makeschin F (1980) Beeinflussung des Ertrags von Weidelgras (Lolium multiflorum) durch Ausscheidungen von Regenwürmern dreier verschiedener Arten. Pedobiologia 20:176–180Google Scholar
  37. Grappelli A, Rossi W (1978) Studio del metabolismo dell'acido indolacetico in microorganismi del suolo. In: Lombardo Editore Roma (ed) Proceedings XVIII Congresso Naz Soc Ital di Microbiol, Fiuggi, Italy, 2–4 June 1978, pp 338–341Google Scholar
  38. Grappelli A, Cacciari I, Lippi D, Pietrosanti W (1978) Influences of bacterial metabolites on the growth of Agaricus bisporus in submerged cultures. In: Delmas J (ed) Mushroom Sci 10/1 (Proceedings of the 10th International Congress on the Science and Cultivation of Edible Fungi, France) Tardy Quercy SA, Bourges, pp 335–345Google Scholar
  39. Grappelli A, Tomati U, Galli E, Vergari B (1985) Earthworm casting in plant propagation. Hort Sci 20:874–876Google Scholar
  40. Grappelli A, Galli E, Tomati U (1987) Earthworm casting effect on Agaricus bisporus fructification. Agrochimica (in press)Google Scholar
  41. Greene EM (1980) Cytokinin production by microorganisms. Bot Rev 46:25–74Google Scholar
  42. Hageman RH (1979) Integration of nitrogen assimilation in relation to yield. In: Hevitt EJ, Cutting CV (eds) Nitrogen assimilation of plants. Proceedings of 6th Long Ashton Symposium. Academic Press, London New York San Francisco, pp 591–611Google Scholar
  43. Harding DJL, Studdart RA (1974) Microarthropods. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition. Academic Press, New York, vol 2, pp 489–532Google Scholar
  44. Hartenstein R (1982) Soil microinvertebrates, aldehyde oxidase, catalase, cellulase and peroxydase. Soil Biol Biochem 14:387–391Google Scholar
  45. Hayes MHB (1983) Darwin's “vegetable mould” and some modern concepts of humus structure and soil aggregation. In: Satchel JE (ed) Earthworm ecology from Darwin to vermiculture. Chapman and Hall, London New York, pp 19–33Google Scholar
  46. Hayes WA (1974) Microbiological activity in the casing layer and its relation to productivity and disease control. In: Hayes WA (ed) The casing layer. Arnold, London, pp 27–48Google Scholar
  47. Hayes WA, Nair NG (1975) The cultivation of Agaricus bisporus and other edible mushrooms. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 1. Arnold, London, pp 212–248Google Scholar
  48. Hopp H, Slater CS (1949) The effect of earthworm on the productivity of agricultural soil. J Agric Res 78:325–339Google Scholar
  49. Kaplan D, Hartenstein R (1977) Absence of nitrogenase and nitrate reductase in soil macroinvertebrates. Soil Sci 124:328–331Google Scholar
  50. Lee KE (1985) Earthworms—their ecology and relationship with soils and land use. Academic Press, SydneyGoogle Scholar
  51. Lee KE, Ladd JN (1984) Some recent advances in soil biology and biochemistry. In: Proceedings of National Soils Conference. Australian Society of Soil Science, Brisbane, pp 83–103Google Scholar
  52. Lynch JH (1979) The terrestrial environment. In: Lynch JH, Poole HJ (eds) Microbial ecology — A conceptual approach. Blackwell, LondonGoogle Scholar
  53. Mackay AD, Syers JK, Springett JA, Gregg PEH (1982) Plant availability of phosphorus in superphosphate and a phosphate rock as influenced by earthworms. Soil Biol Biochem 14:281–287CrossRefPubMedGoogle Scholar
  54. Marshall VG (1971) Effect of soil arthropods and earthworms on the growth of black spruce. Ann Zool Ecol Anim Spec Publ 4:109–118Google Scholar
  55. Nielson RL (1965) Presence of plant growth substances in earthworms demonstrated by paper chromatography and the Went pea test. Nature (Lond) 208:1113–1114Google Scholar
  56. O'Donoghue D (1965) Relationship between some compost factors and their effects on the yield of Agaricus. Mushroom Sci 6:245Google Scholar
  57. Park JY, Agnihotry VP (1969) Bacterial metabolites trigger sporophore formation in Agaricus bisporus. Nature 222:984Google Scholar
  58. Parle JN (1963) A microbiological study on earthworm casts. J Gen Microbiol 31:13–22Google Scholar
  59. Patriquin DG, Dobereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915Google Scholar
  60. Poapst PA, Genier C, Schnitzer M (1970) Effect of a soil fulvic acid on stem elongation in peas. Plant Soil 32:367–372Google Scholar
  61. Van Rhee JA (1965) Earthworm activity and plant growth in artificial cultures. Plant Soil 22:45–48Google Scholar
  62. Van Rhee JA (1971) Some aspects of the productivity of orchards in relation to earthworm activities. Ann Zool Ecol Anim 4:99–108Google Scholar
  63. Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil Biology. Academic Press, London, pp 259–322Google Scholar
  64. Satchell JE (1983) Has vermiculture a future? Implications of current trends in advertising. In: Tomati U, Grappelli A (eds) Proceedings of International Symposium on Agricultural and Environmental Prospects in Earthworm Farming, Rome, Tipolitografia Euromodena, pp 15–36Google Scholar
  65. Satchell JE, Martin K, Krishnamoorthy RV (1984) Stimulation of microbial phosphatase production by earthworm activity. Soil Biol Biochem 16:195–197Google Scholar
  66. Scott TK (ed) (1984) Hormonal regulation of development II. Encyclopedia of plant physiology, new series, vol 10. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  67. Scott-Russel R, Cannel RQ (1975) Effects of direct drilling on soil conditions and root growth. Outlook Agric 8:227–232PubMedGoogle Scholar
  68. Springett JA, Syers JK (1979) The effect of earthworm casts on ryegrass seedling. In: Crosby TK, Pottinger RP (eds) Proceedings of the 2nd Australasian Conference on Grassland Invertebrate Ecology. Government Printer, Wellington, pp 44–47Google Scholar
  69. Stockdill SMJ, Cossens GG (1966) The role of earthworms in pasture production and moisture conservation. In: Proceedings of the New Zealand Grasslands Association, pp 168–183Google Scholar
  70. Stout JD (1983) Organic matter turnover by earthworms. In: Satchell JE (ed) Earthworm ecology from Darwin to vermiculture. Chapman and Hall, London New York, pp 35–48Google Scholar
  71. Tichy V, Phuong HK (1975) On the character of biological effect of humic acids. Humus Planta 6:379–382Google Scholar
  72. Tomati U, Grappelli A, Galli E (1983a) Fattori di fertilità nell'humus di lombrico. In: Tomati U, Grappelli A (eds) Proceedings of International Symposium on Agricultural and Environmental Prospects in Earthworm Farming, Rome, Tipolitografia Euromodena, pp 49–56Google Scholar
  73. Tomati U, Grappelli A, Galli E (1983b) Lombrichi, fertilità del suolo e sviluppo delle piante. Il vermicompostaggio come alternativa nel riciclo dei rifiuti organici. I Assemblea Nazionale sull'allevamento del lombrico, Verona, La Tipografica Varese, pp 45–57Google Scholar
  74. Tomati U, Grappelli A, Galli E (1985) The presence of growth regulators in earthworm worked wastes. In: Proceedings of International Symposium on Earthworms, Bologna-Carpi, Italy, 31 March–5 April 1985. Collana U. Z. I. (Selected symposia, no 1)Google Scholar
  75. Vaughan D, McDonald IR (1971) Effects of humic acid on protein synthesis and ion uptake in beet discs. J Exp Bot 22:400–410Google Scholar
  76. Vaughan D, Ord BG, Malcolm RE (1978) Effect of soil organic matter on some root surface enzymes of and uptakes into winter wheat. J Exp Bot 29:1337–1344Google Scholar
  77. Wareing PF (ed) (1982) Plant growth substances 1982. Proceedings of the 11th International Conference on Plant Growth Substances. Academic Press, LondonGoogle Scholar
  78. Wirwille JW, Mitchell JW (1950) Six new plant-growth-inhibiting compounds. Bot Gaz 111:419–494Google Scholar
  79. Wittwer SH (1978) Phytohormones and chemical regulators in agriculture. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: a comprehensive treatise, vol 2. Elsevier North-Holland Biomedical Press, Amsterdam Oxford New York, pp 599–615Google Scholar
  80. Yeates GW (1981) Soil nematode populations reduced in the presence of earthworms. Pedobiologia 22:191–195Google Scholar
  81. Zeevaart JAD (1978) Phytohormones and flower formation. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol 2. Elsevier/North Holland Biomedical Press,Amsterdam Oxford New York, pp 291–327Google Scholar
  82. Zrazhevsky AI (1957) Dozdevye cervi kak faktor plodorodija lesnych pocv. Akad Nauk Vkr SSR KievGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • U. Tomati
    • 1
  • A. Grappelli
    • 1
  • E. Galli
    • 1
  1. 1.Institute of Plant Biochemistry and EcophysiologyNational Research CouncilMonterotondo Scalo (Rome)Italy

Personalised recommendations