Skip to main content
Log in

Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Through genetic studies, the fliA gene product has been shown to regulate positively gene expression in late operons of the flagellar regulon in Salmonella typhimurium. In the present study, the fliA gene was cloned and sequenced. The fliA coding region consisted of 717 nucleotides beginning with the GTG initiation codon and the conserved sequence specific to promoters for flagellar operons was found to exist upstream of the coding region. The fliA gene product deduced from the nucleotide sequence was a protein with 239 amino acid residues and the calculated molecular mass was 27470 dalton. The deduced amino acid sequence was homologous with that of σ28, a flagellar specific sigma factor of Bacillus subtilis. The fliA gene product was identified as a protein of molecular mass 29 kDa in the in vitro transcription-translation system, while three proteins of 29 kDa, 31 kDa and 32 kDa were found in the products programmed by the fliA gene in minicells and in maxicells. The 29 kDa FHA protein was purified from the FliA overproducing strain which carried the ptac-fliA fusion. This protein activated the in vitro synthesis of flagellin, the fliC gene product. RNA polymerase containing the purified FliA protein was shown to transcribe the fliC gene. These results indicate that FliA protein functions as an alternative sigma factor specific for S. typhimurium flagellar operons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Adler HI, Fisher WD, Cohen A, Hardigree AA (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA 57:321–326

    Google Scholar 

  • Amann E, Ochs B, Abel K-J (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315

    Google Scholar 

  • Arnosti DN, Chamberlin MJ (1989) Secondary σ factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc Natl Acad Sci USA 86:830–834

    Google Scholar 

  • Bahl H, Echols D, Straus DB, Court D, Crowl R, Georgopoulos CP (1987) Induction of the heat shock response of E. coli through stabilization of σ32 by the phage λ cIII protein. Genes Dev 1:57–64

    Google Scholar 

  • Bartlett DH, Frantz BB, Marsumura P (1988) Flagellar transcription activators FlbB and FlaI: Gene sequences and 5′ consensus sequences of operons under FlbB and Flal control. J Bacteriol 170:1575–1581

    Google Scholar 

  • Boyd DH, Porter LM, Young BS, Wright A (1979) The in vitro detection of defects in temperature sensitive RNA polymerases from mutants of Salmonella typhimurium. Mol Gen Genet 173:279–287

    Google Scholar 

  • Brosius J, Holy A (1984) Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci USA 81:6929–6933

    Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    CAS  PubMed  Google Scholar 

  • Burgess RR, Jendrisak JJ (1975) A procedure for the rapid, largescale purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry 14:4634–4638

    CAS  PubMed  Google Scholar 

  • Burton Z, Burgess RR, Lin J, Moore D, Holder S, Gross CA (1981) The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E. coli K12. Nucleic Acids Res 9:2889–2903

    Google Scholar 

  • Erickson BD, Burton ZF, Watanabe KK, Burgess RR (1985) Nucleotide sequence of the rpsU-dnaG-rpoD operon from Salmonella typhimurium and comparison of the sequence with the homologous operon of Escherichia coli. Gene 40:67–78

    Google Scholar 

  • Gitt MA, Wang L-F, Doi RH (1985) A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem 260:7178–7185

    Google Scholar 

  • Gribskov M, Burgess RR (1986) Sigma factors from E. coli B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucleic Acids Res 14:6745–6763

    Google Scholar 

  • Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat shock promoters. Cell 38:383–390

    Google Scholar 

  • Hara H, Nishimura Y, Kato J, Suzuki H, Nagasawa H, Suzuki A, Hirota Y (1989) Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli. J Bacteriol 171:5882–5889

    Google Scholar 

  • Helmann JD, Chamberlin MJ (1987) DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative a factor. Proc Natl Acad Sci USA 84:6422–6424

    Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872

    Google Scholar 

  • Helmann JD, Marquez LM, Chamberlin MJ (1988) Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J Bacteriol 170:1568–1574

    Google Scholar 

  • Hirschman J, Wong PK, Sei K, Keener J, Kustu S (1985) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a σ factor. Proc Natl Acad Sci USA 82:7525–7529

    Google Scholar 

  • Iino T, Komeda Y, Kutsukake K, Macnab RM, Matsumura P, Parkinson JS, Simon MI, Yamaguchi S (1988) New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. Microbiol Rev 52:533–535

    Google Scholar 

  • Inoue YH, Kutsukake K, Iino T, Yamaguchi S (1989) Sequence analysis of operator mutants of phase-1 flagellan-encoding gene, fliC, in Salmonella typhimurium. Gene 85:221–226

    Google Scholar 

  • Jo Y-L, Nara F, Ichihara S, Mizuno T, Mizushima S (1986) Purification and characterization of the OmpR protein, a positive regulator involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J Biol Chem 261:15252–15256

    Google Scholar 

  • Kajitani M, Ishihama A (1983) Determination of the promoter strength in the mixed transcription system: promoters of lactose, tryptophan and ribosomal protein L10 operons from Escherichia coli. Nucleic Acids Res 11:671–686

    Google Scholar 

  • Komeda Y (1982) Fusions of flagellar operons to lactose genes on a Mu lac bacteriophage. J Bacteriol 150:16–26

    Google Scholar 

  • Komeda Y (1986) Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol 168:1315–1318

    Google Scholar 

  • Komeda Y, Kutsukake K, Iino T (1980) Definition of additional flagellar genes in Escherichia coli K12. Genetics 94:277–290

    Google Scholar 

  • Kutsukake K, Nakao T, Iino T (1985) A gene for DNA invertase and an invertible DNA in Escherichia coli K-12. Gene 34:343–350

    Google Scholar 

  • Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747

    Google Scholar 

  • Kutsukake K, Ohya Y, Yamaguchi S, Iino T (1988) Operon structure of flagellar genes in Salmonella typhimurium. Mol Gen Gene 214:11–15

    Google Scholar 

  • Lowe PA, Hager DA, Burgess RR (1979) Purification and properties of the σ subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry 18:1344–1352

    Google Scholar 

  • Macnab RM (1987) Flagella. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington DC, pp 70–83

    Google Scholar 

  • Makino K, Shinagawa H, Amemura M, Kimura S, Nakata A, Ishihama A (1988) Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol 203:85–95

    Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membrane. J Biol Chem 262:10035–10038

    Google Scholar 

  • Mirel DB, Chamberlin MJ (1989) The Bacillus subtilis, flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J Bacteriol 171:3095–3101

    Google Scholar 

  • Reiner AM (1969) Isolation and mapping of polynucleotide phosphorylate mutants of Escherichia coli. J Bacteriol 97:1431–1436

    Google Scholar 

  • Richet E, Raibaud O (1987) Purification and properties of the MalT protein, the transcription activator of the Escherichia coli maltose regulon. J Biol Chem 262:12647–12653

    Google Scholar 

  • Roozen KJ, Fenwick RG Jr, Curtiss RIII (1971) Synthesis of ribonucleic acid and protein in plasmid-containing minicells of Escherichia coli K-12. J Bacteriol 107:21–33

    Google Scholar 

  • Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137:692–693

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329:348–351

    Google Scholar 

  • Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of Escherichia coli heat shock regulatory factor σ32. J Bacteriol 171:1585–1589

    CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Yamaguchi S, Fujita H, Taira T, Kutsukake K, Homma M, Iino T (1984) Genetic analysis of three additional fla genes in Salmonella typhimurium. J Gen Microbiol 130:3339–3342

    Google Scholar 

  • Yura T, Tobe T, Ito K, Osawa T (1984) Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proc Natl Acad Sci USA 81:6803–6807

    Google Scholar 

  • Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnishi, K., Kutsukake, K., Suzuki, H. et al. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium . Molec. Gen. Genet. 221, 139–147 (1990). https://doi.org/10.1007/BF00261713

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261713

Key words

Navigation