Skip to main content
Log in

A · T → C · G transversions and their prevention by the Escherichia coli mutT and mutHLS pathways

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Escherichia coli mutT strains are strong mutators yielding only A · T → C · G transversion mutations. These are thought to result from uncorrected (or unprevented) A · G mispairings during DNA replication. We have investigated the interaction of mutT-induced replication errors with the mutHLS-encoded postreplicative mismatch repair system. By measuring mutation frequencies in both forward and reversion systems, we have demonstrated that mutTmutL and mutTmutS double mutators produce no more mutants than expected from simple additivity of the frequencies in the single mutators. We conclude that mutT-induced A · G replication errors are not recognized by the MutHLS system. On the other hand, direct measurements of mismatch repair by transfection of bacteriophage M13mp2 heteroduplex DNA as well as mutational data from strains other than mutT indicate that the MutHLS system can repair at least certain A · G mispairs. We suggest that A · G mispairs may exist in several different conformations, some of which are recognized by the MutHLS system. However, the A · G mispairs normally prevented by the mutT function are refractory to mismatch repair, indicating that they may represent a structurally distinct class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama M, Horiuchi T, Sekiguchi M (1987) Molecular cloning and nucleotide sequence of the mutT mutator of Escherichia coli that causes A:T to C:G transversion. Mol Gen Genet 206:9–16

    Google Scholar 

  • Allen MK, Yanofsky C (1963) A biochemical and genetic study of reversion with the A-gene A-protein system of Escherichia coli tryptophan synthetase. Genetics 48:1065–1083

    Google Scholar 

  • Au KG, Cabrera M, Miller JH, Modrich P (1988) Escherichia coli mutY gene product is required for specific A-G → C · G mismatch correction. Proc Natl Acad Sci USA 85:9163–9166

    Google Scholar 

  • Bhatnagar SK, Bessman MJ (1988) Studies on the mutator gene, mutT of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J Biol Chem 263:8953–8957

    Google Scholar 

  • Brown T, Hunter WN, Kneale G, Kennard O (1986) Molecular structure of the G · A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci USA 83:2402–2406

    Google Scholar 

  • Choy HE, Fowler RG (1985) The specificity of base-pair substitution induced by the mutL and mutS mutators in E. coli. Mutat Res 142:93–97

    Google Scholar 

  • Claverys JP, Lacks SA (1986) Heteroduplex DNA base mismatch repair in bacteria. Microbiol Rev 50:133–165

    Google Scholar 

  • Conrad SE, Dussik KT, Siegel EC (1976) A phage Mu-1 induced mutation to mutT in Escherichia coli. J Bacteriol 125:1018–1025

    Google Scholar 

  • Cox EC (1973) Mutator gene studies in Escherichia coli: the mutT gene. Genetics Supplement 73:67–80

    Google Scholar 

  • Cox EC (1976) Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet 10:135–156

    Google Scholar 

  • Cox EC, Degnen GE, Scheppe ML (1972) Mutator gene studies in Escherichia coli: the mutS gene. Genetics 72:551–567

    Google Scholar 

  • Degnen GE, Cox EC (1974) Conditional imitator gene in Escherichia coli: isolation, mapping and effector studies. J Bacteriol 117:447–487

    Google Scholar 

  • Dohet C, Wagner R, Radman M (1985) Repair of defined single base-pair mismatches in Escherichia coli. Proc Natl Acad Sci USA 82:503–505

    Google Scholar 

  • Drapeau GR, Brammar WJ, Yanofsky C (1968) Amino acid replacements of the glutamic residue at position 48 in the tryptophan synthetase A protein of Escherichia coli. J Mot Biol 35:357–367

    Google Scholar 

  • Fazakerley GV, Quignard E, Woisard A, Guschlbauer W, van der Marel GA, van Boom GH, Jones M, Radman M (1986) Structures of mismatched base pairs in DNA and their recognition by the Escherichia coli mismatch repair system. EMBO J 5:3697–3703

    Google Scholar 

  • Fersht AR, Knill-Jones JW (1981) DNA polymerase accuracy and spontaneous mutation rates: Frequencies of purine · purine, purine · pyrimidine, and pyrimidine · pyrimidine mismatches during DNA replication. Proc Natl Acad Sci USA 78:4251–4255

    Google Scholar 

  • Fersht AR, Shi J-P, Tsui W-C (1983) Kinetics of base misinsertion by DNA polymerase I of Escherichia coli. J Mot Biol 165:655–667

    Google Scholar 

  • Fowler RG, Degnen GE, Cox EC (1974) Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet 133:179–191

    Google Scholar 

  • Gao X, Patel DJ (1988) G(syn)·A(anti) mismatch formation in DNA dodecamers at acidic pH: pH-dependent conformational transition of G · A mispairs detected by proton NMR. J Am Chem Soc 110:5178–5182

    Google Scholar 

  • Glickman BW (1979) Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyladenine residues in their DNA. An altered mutation spectrum in dam mutants. Mutat Res 61:153–162

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Jones MJ, Wagner R, Radman M (1987) Repair of a mismatch is influenced by the base composition of the surrounding nucleotide sequence. Genetics 115:605–610

    Google Scholar 

  • Kan L, Chandrasegaran S, Pulford SM, Miller PS (1983) Detection of a guanine-adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 80:4263–4265

    Google Scholar 

  • Kennard O (1987) The molecular structure of base pair mismatches. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 1. Springer, Berlin Heidelberg, pp 25–52

    Google Scholar 

  • Kramer B, Kramer W, Fritz HJ (1984) Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell 38:879–887

    Google Scholar 

  • Kunkel TA (1984) Mutational specificity of depurination. Proc Natl Acad Sci USA 81:1494–1498

    Google Scholar 

  • Kunkel TA, Alexander PS (1986) The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitutions by dislocation. J Biol Chem 261:160–166

    Google Scholar 

  • Kunkel TA, Soni A (1988) Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-γ. J Biol Chem 263:4450–4459

    Google Scholar 

  • Lester G, Yanofsky C (1961) Influence of 3-methylanthranilic and anthranilic acids on the formation of tryptophan synthetase in Escherichia coli. J Bacteriol 81:81–90

    Google Scholar 

  • Lu A-L, Chang D-Y (1988a) A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell 54:805–812

    Google Scholar 

  • Lu A-L, Chang D-Y (1988b) Repair of single base-pair transversion mismatches of Escherichia coli in vitro: correction of certain A/G mismatches is independent of dam methylation and host mutHLS gene functions. Genetics 118: 593–600

    Google Scholar 

  • Modrich P (1987) DNA mismatch correction. Annu Rev Biochem 56:435–466

    Google Scholar 

  • Nghiem Y, Cabrera M, Cupples CG, Miller JH (1988) The mutY gene: a imitator locus in Escherichia coli that generates G · C → T · A transversions. Proc Natl Acad Sci USA 85:2709–2713

    Google Scholar 

  • Patel DJ, Koszlowski SA, Ikuta S, Itakura K (1984) Deoxyguanosine-deoxyadenosine pairing in the d(C-G-A-G-A-A-T-T-C-GC-G) duplex: conformation and dynamics at and adjacent to the dG · dA mismatch site. Biochemistry 23: 3207–3217

    Google Scholar 

  • Privé GG, Heinemann U, Chandrasegaran S, Kan L-S, Kopka ML, Dickerson RE (1987) Helix geometry, hydration, and G · A mismatch in a B-DNA decamer. Science 238:498–504

    Google Scholar 

  • Radicella JP, Clark EA, Fox MS (1988) Some mismatch repair activities in Escherichia coli. Proc Natl Acad Sci USA 85:9674–9678

    Google Scholar 

  • Radman M, Wagner R (1986) Mismatch repair in Escherichia coli. Annu Rev Genet 20:523–538

    Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, New York, pp 76–78

    Google Scholar 

  • Schaaper RM (1988) Mechanisms of mutagenesis in the Escherichia coli imitator mutD5: role of DNA mismatch repair. Proc Natl Acad Sci USA 85:8126–8130

    Google Scholar 

  • Schaaper RM (1989) Escherichia coli mutator mutD5 is defective in the mutHLS pathway of DNA mismatch repair. Genetics 121:205–212

    Google Scholar 

  • Schaaper RM, Dunn RL (1987a) Escherichia coli mutT mutator effect during in vitro DNA synthesis. J Biol Chem 262:16267–16270

    Google Scholar 

  • Schaaper RM, Dunn RL (1987b) Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: The nature of in vivo DNA replication errors. Proc Natl Acad Sci USA 84:6220–6224

    Google Scholar 

  • Schaaper RM, Dunn RL (1988) Escherichia coli mutT mutator: increased dGTP misincorporation opposite template adenines during DNA replication. In: Moses RE, Summers WC (eds) DNA replication and mutagenesis. Am Soc Microbiol, Washington, DC, pp 325–331

    Google Scholar 

  • Schaaper RM, Danforth BN, Glickman BW (1985) Rapid repeated cloning of mutant lac repressor genes. Gene 39:181–189

    Google Scholar 

  • Siegel EC, Wain SL, Meltzer SF, Binion ML, Steinberg JL (1982) Mutator mutations in Escherichia coli induced by the insertion of phage Mu and the transposable resistance elements Tn5 and Tn10. Mutat Res 93:25–33

    Google Scholar 

  • Sloane DL, Goodman MF, Echols H (1988) The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme. Nucleic Acids Res 16:6465–6475

    Google Scholar 

  • Squires C, Carbon J (1971) Normal and mutant glycine transfer RNAs. Nature New Biol 233:274–277

    Google Scholar 

  • Su SS, Lahue RS, Au KG, Modrich P (1988) Mispair specificity of methyl-directed DNA mismatch correction in vitro. J Biol Chem 263:6829–6835

    Google Scholar 

  • Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289

    Google Scholar 

  • Treffers HP, Spinelli V, Belser NO (1954) A factor (or mutator gene) influencing mutation rates in Escherichia coli. Proc Natl Acad Sci USA 40:1064–1071

    Google Scholar 

  • Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106

    Google Scholar 

  • Yanofsky C, Cox EC, Horn VD (1966a) The unusual mutagenic specificity of an Escherichia coli mutator gene. Proc Natl Acad Sci USA 55:274–281

    Google Scholar 

  • Yanofsky C, Ito J, Horn VD (1966b) Amino acid replacements and the genetic code. Cold Spring Harbor Symp Quant Biol 31:151–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B.J. Kilbey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaaper, R.M., Bond, B.I. & Fowler, R.G. A · T → C · G transversions and their prevention by the Escherichia coli mutT and mutHLS pathways. Molec. Gen. Genet. 219, 256–262 (1989). https://doi.org/10.1007/BF00261185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261185

Key words

Navigation