Skip to main content
Log in

Nucleotide sequence of the gene encoding the nitrogenase iron protein (nifH) of Azospirillum brasilense and identification of a region controlling nifH transcription

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The DNA sequence was determined for the Azospirillum brasilense nifH gene and part of the nifD gene. The nifH gene is 885 by long and encodes 293 amino acid residues. The region upstream of the nifH open reading frame contains a putative promoter whose sequence shows perfect homology with promoters of other diazotrophic bacteria and two putative upstream activator sequences. Experiments with the promoter-probe vector pAF300 showed that this region promotes transcription in response to the nitrogen and oxygen availability of the cell. The amino acid sequence was deduced from the DNA nucleotide sequence of nifH; the polypeptide contains the four cysteine residues highly conserved among other nifH products and an arginine residue at position 101 which could be the site of the modification occurring during the “switch-off” of nitrogenase. The codon usage appears to be very biased reflecting the high G+C content of the Azospirillum nifH gene. In a comparison of the amino acid sequence with the other 18 known nifH gene products, the A. brasilense nifH product showed the highest level of homology with fast-growing Rhizobia suggesting interesting evolutionary implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bani D, Barberio C, Bazzicalupo M, Favilli F, Gallori E, Polsinelli M (1980) Isolation and characterization of glutamate synthase mutants of Azospirillum brasilense. J Gen Microbiol 119:239–244

    Google Scholar 

  • Beynon JL, Cannon M, Buchanan-Wollaston V, Cannon FM (1983) The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34:665–671

    Google Scholar 

  • Bozouklian M, Elmerich C (1986) Nucleotide sequence of the Azospirillum brasilense SP7 glutamine synthetase structural gene. Biochimie 68:1181–1187

    Google Scholar 

  • Brigle KE, Newton WE, Dean DR (1985) Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37:37–44

    Google Scholar 

  • Buck M, Miller S, Drummond M, Dixon R (1986) Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 320:374–378

    Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5,4:376–379

    Google Scholar 

  • Chen KCK, Chen JS, Johnson J (1986) Structural features of multiple nifH-like sequences and very biased codon usage in nitrogenase genes of Clostridium pasteurianum. J Bacteriol 166:162–172

    Google Scholar 

  • Dobereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen — fixing sites. In: Newton WE, Nyman CY (eds) 1st International Symposium N2 — Fixation. Washington State University Press, Pullman, pp 518–536

    Google Scholar 

  • Fani R, Bazzicalupo M, Ricci F, Schipani C, Polsinelli M (1988) A plasmid vector for the selection and study of transcription promoters in Azospirillum brasilense. FEMS Microbiol Lett 50:271–276

    Google Scholar 

  • Fani R, Bazzicalupo M, Damiani G, Bianchi A, Schipani C, Sgaramella V, Polsinelli M (1989) Cloning of histidine genes of Azospirillum brasilense: organization of the ABFH genes cluster and nucleotide sequence of the hisB gene. Mol Gen Genet 216:224–229

    Google Scholar 

  • Fahsold R, Singh M, Klingmuller W (1985) Cosmid cloning of nitrogenase structural genes of Azospirillum lipoferum. In: Klingmuller W (ed) Azospirillum III: Genetics, physiology, ecology. Springer, Berlin, pp 30–40

    Google Scholar 

  • Figurski D, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Google Scholar 

  • Fischer M, Levy E, Geller Y (1986) Regulatory mutation that controls nif expression and histidine transport in Azospirillum brasilense. J Bacteriol 167:423–426

    Google Scholar 

  • Fox GE, Pechmann KR, Woese CR (1977) Comparative cataloguing of 16S rRNA; Molecular approach to procaryotic systematics. Int J Syst Bacteriol 27:44–57

    Google Scholar 

  • Fuhrmann M, Hennecke H (1984) Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011

    Google Scholar 

  • Gallori E, Bazzicalupo M (1985) Effect of nitrogen compounds on nitrogenase activity in Azospirillum brasilense. FEMS Microbiol Lett 28:35–38

    Google Scholar 

  • Gussin GN, Robson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Hartmann A, Fu H, Burris R (1986) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J Bacteriol 165:864–870

    Google Scholar 

  • Hennecke H, Kaluza K, Thony B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348

    Google Scholar 

  • Lowry OJ, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mevarech M, Rice D, Haselkorn R (1980) Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci USA 77:6476–6480

    Google Scholar 

  • Miller JM (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Nair SK, Jara P, Quiviger B, Elmerich C (1983) Recent development in the genetics of nitrogen fixation in Azospirillum. In: Klingmuller W (ed) Azospirillum II. EXS48. Birkhauser, Basel, pp 29–38

    Google Scholar 

  • Norel F, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. J Gen Microbiol 133:1563–1576

    CAS  PubMed  Google Scholar 

  • Normand P, Simonet P, Bardin R (1988) Conservation of nif sequences in Frankia. Mol Gen Genet 213:238–246

    Google Scholar 

  • Paolella G (1985) A fast DNA sequence handling program for AppleII computer in basic and 6502 assembler. CABIOS 1:43–49

    Google Scholar 

  • Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes in Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol Lett 23:95–101

    Google Scholar 

  • Perroud B, Bandhari SK, Elmerich C (1985) The nifHDK operon of Azospirillum brasilense SP7. In: Klingmuller W (ed) Azospirillum III: Genetics, physiology, ecology. Springer, Berlin, pp 10–19

    Google Scholar 

  • Pope MR, Murrell SA, Ludden PW (1985) Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue. Proc Natl Acad Sci USA 82:3173–3177

    Google Scholar 

  • Pretorius IM, Rawlings DE, O'Neill EG, Jones WA, Kirby R, Woods DR (1987) Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans. J Bacteriol 169:367–370

    Google Scholar 

  • Quinto C, de la Vega H, Flores M, Leemans J, Cavallos MA, Pardo MA, Azpiroz R, de Lourdes Girard M, Calva E, Palacios R (1985) Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci USA 82:1170–1174

    Google Scholar 

  • Quiviger B, Franche C, Luftalla G, Haselkorn R, Elmerich C (1982) Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense. Biochimie 64:495–502

    Google Scholar 

  • Riess G, Holloway BW, Puhler A (1980) R68-45, a plasmid with chromosome mobilizing activity (Cma) carries a tandem duplication. Genet Res 36:99–109

    Google Scholar 

  • Robson R, Woodley P, Jones R (1986) Second gene (nifH *) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. EMBO J 5:1159–1163

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5466

    CAS  PubMed  Google Scholar 

  • Schumann JP, Waitches GM, Scolnik PA (1986) A DNA fragment hybridizing to a nif probe in Rhodobacter capsulatus is homologous to a 16S rRNA gene. Gene 48:81–92

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1981) Biological nitrogen fixation: primary structure of the Klebsiella pneumoniae nifH and nifD genes. J Mol Appl Genet 1:71–81

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1983a) Nitrogenase structural genes are unlinked in the non-legume symbiont Parasponia Rhizobium. DNA 2:141–148

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1983b) Biological nitrogen fixation: primary structure of the Rhizobium trifolii iron protein gene. DNA 2:149–155

    Google Scholar 

  • Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol — resistant bacteria. Methods Enzymol 43:737–746

    Article  CAS  PubMed  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA — complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Google Scholar 

  • Souillard N, Sibold L (1986) Primary structure and expression of a gene homologous to nifH (nitrogenase Fe-protein) from the archaebacterium Methanococcus voltae. Mol Gen Genet 203:21–28

    Google Scholar 

  • Souillard N, Margot M, Possot O, Sibold L (1988) Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolutionary implications. J Mol Evol 27:65–76

    Google Scholar 

  • Sundaresan V, Ausubel FM (1981) Nucleotide sequence of the gene coding for the nitrogenase iron protein from Klebsiella pneumoniae. J Biol Chem 256:2808–2812

    Google Scholar 

  • Tarrand JJ, Krieg NR, Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Google Scholar 

  • Torok I, Kondorosi A (1981) Nucleotide sequence of the R. meliloti nitrogenase reductase (nifH) gene. Nucleic Acids Res 21:5711–5723

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and hosts strains: nucleotide sequences of the M13mp18 pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fani, R., Allotta, G., Bazzicalupo, M. et al. Nucleotide sequence of the gene encoding the nitrogenase iron protein (nifH) of Azospirillum brasilense and identification of a region controlling nifH transcription. Molec. Gen. Genet. 220, 81–87 (1989). https://doi.org/10.1007/BF00260860

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260860

Key words

Navigation