Skip to main content
Log in

The maize autonomous element Activator (Ac) shows a minimal germinal excision frequency of 0.2%–0.5% in transgenic Arabidopsis thaliana plants

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The autonomous mobile element Activator from Zea mays was introduced into Arabidopsis thaliana via Agrobacterium-mediated gene transfer. The use of a chimaeric construct, where the Ac element is located in the leader of the neomycin phosphotransferase (NPT II) gene, enabled the excision of Ac to be monitored by assaying for the reconstitution of NPT II gene activity. Using this approach, the transpositional activity of AC was initially studied in primary transformants. About 50% of the regenerating Ac transformants showed evidence for excision of the element. Reintegration of Ac was confirmed by Southern blot analysis. Transposition events are transmitted to the F1 generation with a minimal frequency of 0.3%. In a few exceptional cases they are detected in a high proportion of the F1 generation. Seedlings from the F2 and F3 generations were assayed for the rate of germinal excisions by scoring for kanamycin resistance. The minimal frequency of germinal excision events amounts to 0.2%–0.5% and hence allows the use of the Ac element for gene tagging purposes in A. thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amasino RM (1986) Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem 152:304–307

    Google Scholar 

  • Baker B, Schell J, Lörz H, Fedoroff N (1986) Transposition of the maize controlling element “Activator” in tobacco. Proc Natl Acad Sci USA 83:4844–4848

    CAS  Google Scholar 

  • Baker B, Coupland G, Fedoroff N, Starlinger P, Schell J (1987) Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J 6:1547–1554

    Google Scholar 

  • Brink RA, Williams E (1973) Mutable R-Navajo alleles of cyclic origin in maize. Genetics 73:273–296

    Google Scholar 

  • Estelle MA, Somerville CR (1986) The mutants of Arabidopsis. Trends Genet 2:89–93

    Google Scholar 

  • Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA 81:3825–3829

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Feldmann KA, Marks MD, Christianson ML, Quatrano RS (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243:1351–1354

    Google Scholar 

  • Greenblatt IM (1968) The mechanism of Modulator transposition in maize. Genetics 58:585–597

    Google Scholar 

  • Hain R, Stabel P, Czernilofsky AP, Steinbiß HH, Herrera-Estrella L, Schell J (1985) Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol Gen Genet 199:161–168

    Google Scholar 

  • Jones JDG, Carland FM, Maliga P, Dooner HK (1989) Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244:204–207

    Google Scholar 

  • Knapp S, Coupland G, Uhrig H, Starlinger P, Salamini F (1988) Transposition of the maize transposable element Ac in Solanum tuberosum. Mol Gen Genet 213:285–290

    Google Scholar 

  • Lassner MW, Palys JM, Yoder JI (1989) Genetic transactivation of Dissociation elements in transgenic tomato plants. Mol Gen Genet 218:25–32

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  • Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194:15–23

    Google Scholar 

  • Martin C, Carpenter R, Sommer H, Saedler H, Coen ES (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J 4:1625–1630

    Google Scholar 

  • Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229:1214–1218

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  Google Scholar 

  • O'Reilly C, Shepherd NS, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, Saedler H (1985) Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. EMBO J 4:877–882

    Google Scholar 

  • Pang PP, Meyerowitz EM (1987) Arabidopsis thaliana: A model system for plant molecular biology. Biotechnology 5:1177–1181

    Google Scholar 

  • Paz-Ares J, Wienand U, Peterson PA, Saedler H (1986) Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway. EMBO J 5:829–833

    Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211–218

    Google Scholar 

  • Schmidt R, Willmitzer L (1988) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep 7:583–586

    Google Scholar 

  • Schreier PH, Seftor EA, Schell J, Bohnert HJ (1985) The use of nuclear encoded sequences to direct the light regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J 4:25–32

    Google Scholar 

  • Theres N, Scheele T, Starlinger P (1987) Cloning of the Bz2 locus of Zea mays using the transposable element Ds as a gene tag. Mol Gen Genet 209:193–197

    Google Scholar 

  • Van Sluys MA, Tempé J, Fedoroff N (1987) Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J 6:3881–3889

    Google Scholar 

  • Yoder JI, Palys J, Alpert K, Lassner M (1988) Ac transposition in transgenic tomato plants. Mol Gen Genet 213:291–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Willmitzer, L. The maize autonomous element Activator (Ac) shows a minimal germinal excision frequency of 0.2%–0.5% in transgenic Arabidopsis thaliana plants. Molec. Gen. Genet. 220, 17–24 (1989). https://doi.org/10.1007/BF00260850

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260850

Key words

Navigation