Skip to main content
Log in

APMR2 tandem repeat with a modified C-terminus is located downstream from theKRS1 gene encoding lysyl-tRNA synthetase inSaccharomyces cerevisiae

  • Short communications
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

TheKRS1 gene encodes the cytoplasmic form ofSaccharomyces cerevisiae lysyl-tRNA synthetase. TheKRS1 locus has been characterized. The lysyl-tRNA synthetase gene is unique in the yeast genome. The gene is located on the right arm of chromosome IV and disruption of the open reading frame leads to lethality. These results contrast with the situation encountered inEscherichia coli where lysyl-tRNA synthetase is coded by two distinct genes,lysS andlysU, and further address the possible biological significance of this gene duplication. The nucleotide sequence of the 3′-flanking region has been established. It encodes a long open reading frame whose nucleotide and amino acid structures are almost identical toPMR2, a cluster of tandemly repeated genes coding for P-type ion pumps. The sequence alterations relative toPMR2 are mainly located at the C-terminus of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Blanquet S, Plateau P, Brevet A (1983) The role of zinc in 5′,5′diadenosine tetraphosphate production by aminoacyl-tRNA synthetases. Mol Cell Biochem 52:3–11

    Article  PubMed  CAS  Google Scholar 

  • Clark RL, Neidhardt FC (1990) Roles of the two lysyl-tRNA synthetases ofEscherichia coli: analysis of nucleotide sequences and mutant behavior. J Bacteriol 172:3237–3243

    PubMed  CAS  Google Scholar 

  • Delforge J, Messenguy F, Wiame JM (1975) The regulation of arginine biosynthesis inSaccharomyces cerevisiae. The specificity ofargR mutations and the general control of amino acid biosynthesis. Eur J Biochem 57:231–239

    Article  PubMed  CAS  Google Scholar 

  • Emmerich RV, Hirshfield IN (1987) Mapping of the constitutive lysyl-tRNA synthetase gene ofEscherichia coli K-12. J Bacteriol 169:5311–5313

    PubMed  CAS  Google Scholar 

  • Gampel A, Tzagoloff A (1989) Homology of aspartyl- and lysyl-tRNA synthetases. Proc Natl Acad Sci USA 86:6023–6027

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield IN, Tenreiro R, Vanbogelen RA, Neidhardt FC (1984)Escherichia coli K-12 lysyl-tRNA synthetase mutant with a novel reversion pattern. J Bacteriol 158:615–620

    PubMed  CAS  Google Scholar 

  • Hodgson CP, Fisk RZ (1987) Hybridization probe size control: optimized ‘oligolabelling’. Nucleic Acids Res 15:6295

    PubMed  CAS  Google Scholar 

  • Ito N, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  • Kawakami K, Jönsson YH, Björk GR, Ikeda H, Nakamura Y (1988) Chromosomal location and structure of the operon encoding peptide-chain-release factor 2 ofEscherichia coli. Proc Natl Acad Sci USA 85:5620–5624

    Article  PubMed  CAS  Google Scholar 

  • Lévêque F, Plateau P, Dessen P, Blanquet S (1990) Homology oflysS andlysU, the twoEscherichia coli genes encoding distinct lysyl-tRNA synthetase species. Nucleic Acids Res 18:305–312

    PubMed  Google Scholar 

  • Maniatis F, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Mirande M (1991) The aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol (in press)

  • Mirande M, Waller JP (1988) The yeast lysyl-tRNA synthetase gene. Evidence for general amino acid control of its expression and domain structure of the encoded protein. J Biol Chem 263:18443–18451

    PubMed  CAS  Google Scholar 

  • Mirande M, LeCorre D, Riva M, Waller JP (1986) Cloning of yeast lysyl- and phenylalanyl-tRNA synthetase genes. Biochimie 68:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Mirande M, Lazard M, Waller JP (1988) Small-scale purification of bacteriophage λDNA by an Airfuge centrifugation step in cesium chloride gradients. Gene Anal Techn 5:80–82

    Article  CAS  Google Scholar 

  • Mortimer RK, Schild D, Contopoulou CR, Kans JA (1989) Genetic map ofSaccharomyces cerevisiae, edition 10. Yeast 5:321–403

    Article  PubMed  CAS  Google Scholar 

  • Nagashima K, Kasai M, Nagata S, Kaziro Y (1986) Structure of the two genes coding for polypeptide chain elongation factor 1α (EF-1α) fromSaccharomyces cerevisiae. Gene 45:265–273

    Article  PubMed  CAS  Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Putzer H, Brakhage AA, Grunberg-Manago M (1990) Independent genes for two threonyl-tRNA synthetases inBacillus subtilis. J Bacteriol 172:4593–4602

    PubMed  CAS  Google Scholar 

  • Rothstein RJ (1983) One step disruption in yeast. Methods Enzymol 101:202–211

    Article  PubMed  CAS  Google Scholar 

  • Rudolph HK, Fink GR (1990) Multiple plasma membrane Ca2+-pumps in yeast. Yeast 6: S561

    Google Scholar 

  • Rudolph HK, Antebi A, Fink GR (1988) Isolation of an ATPase gene family related to the yeast plasma membrane H+-ATPase. Yeast 4:S357

    Google Scholar 

  • Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, Davidow LS, Mao J, Moir DT (1989) The yeast secretory pathway is perturbed by mutations inPMR1, a member of a Ca2+ ATPase family. Cell 58:133–145

    Article  PubMed  CAS  Google Scholar 

  • Russell DW, Smith M, Williamson VM, Young ET (1983) Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J Biol Chem 258:2674–2682

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P (1987) Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56:125–158

    PubMed  CAS  Google Scholar 

  • Schmitter JM, Mechulam Y, Fayat G, Anselme M (1986) Rapid purification of DNA fragments by high-performance size-exclusion chromatography. J Chromatogr 378:462–466

    PubMed  CAS  Google Scholar 

  • Sherman F, Hicks JB, Fink GR (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) PET genes ofSaccharomyces cerevisiae. Microbiol Rev 54:211–225

    PubMed  CAS  Google Scholar 

  • Vanbogelen RA, Vaughn V, Neidhardt FC (1983) Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps nearcadA inEscherichia coli. J Bacteriol 153:1066–1068

    PubMed  CAS  Google Scholar 

  • Young RA, Davis RW (1983) Yeast RNA polymerase II genes: isolation with antibody probes. Science 222:778–782

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, R., Latreille, MT. & Mirande, M. APMR2 tandem repeat with a modified C-terminus is located downstream from theKRS1 gene encoding lysyl-tRNA synthetase inSaccharomyces cerevisiae . Molec. Gen. Genet. 227, 149–154 (1991). https://doi.org/10.1007/BF00260720

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260720

Key words

Navigation