Skip to main content
Log in

Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

During an investigation into the substrate specificity and processing of subtilisin Carlsberg fromBacillus licheniformis, two major independent findings were made: (i) as has been shown previously, a stretch of five amino acids (residues 97–101 of the mature enzyme) that loops out into the binding cleft is involved in substrate binding by subtilisin Carlsberg. In order to see whether this loop element also determines substrate specificity, the coding region for these five amino acids was deleted from the cloned gene for subtilisin Carlsberg by site-directed mutagenesis. Unexpectedly the resulting mutant preproenzyme (P42c, Mr=42 kDa) was not processed to the mature form (Mr=30 kDa) and was not released into the medium by a proteasedeficientB. subtilis host strain; rather, it accumulated in the cell membrane. This result demonstrates that the integrity of this loop element, which is very distant from the processing cleavage sites in the preproenzyme, is required for secretion of subtilisin Carlsberg. (ii) In culture supernatants fromB. subtilis harbouring the cloned wild-type subtilisin Carlsberg gene the transient appearance (at 0–3 h after onset of stationary phase) of a processing intermediate (P38c, Mr=38 kDa) of this protease could be demonstrated. P38c very probably represents a genuine proform of subtilisin Carlsberg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger H, Goebel W, Kreft J, Bartnik F (1987) Alkalische Protease, Verfahren zur Herstellung von Hybridvektoren und genetisch transformierte Mikroorganismen. German patent DE 3527913A1

  • Bernhard K, Schrempf H, Goebel W (1978) Bacteriocin nd antibiotic resistance plasmids inBacillus cereus andBacillus subtilis. J Bacteriol 133:897–903

    PubMed  CAS  Google Scholar 

  • Bode W, Papamokos E, Musil D (1987) The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leechHirudo medicinalis. Eur J Biochem 166:673–692

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Cohen SN (1979) High frequency transformation ofBacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    Article  PubMed  CAS  Google Scholar 

  • Gryczan TJ, Contente S, Dubnau D (1978) Characterization ofStaphylococcus aureus plasmids introduced by transformation intoBacillus subtilis. J Bacteriol 134:316–329

    Google Scholar 

  • Ikeumura H, Inouye M (1988) In vitro processing of pro-subtilisin produced inEscherichia coli. J Biol Chem 263:12959–12963

    Google Scholar 

  • Jacobs M, Eliasson M, Uhlen M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg fromBacillus licheniformis. Nucleic Acids Res 13:8913–8926

    PubMed  CAS  Google Scholar 

  • Kawamura F, Doi RH (1984) Construction of aBacillus subtilis double mutant defective in extracellular alkaline and neutral proteases. J Bacteriol 160:442–444

    PubMed  CAS  Google Scholar 

  • Koide Y, Nakamura A, Uozumi T, Beppu T (1986) Cloning and sequencing of the major intracellular serine protease gene ofBacillus subtilis. J Bacteriol 167:110–116

    PubMed  CAS  Google Scholar 

  • Kreft J, Berger H, Härtlein M, Müller B, Weidinger G, Goebel W (1983) Cloning and expression inEscherichia coli andBacillus subtilis of the hemolysin (cereolysin) determinant fromBacillus cereus. J Bacteriol 155:681–689

    PubMed  CAS  Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Markland FS, Smith EL (1971) Subtilisins: Primary structure, chemical and physical properties. In: Boyer PD (ed) The enzymes, vol III. Academic Press, New York, pp 561–608

    Google Scholar 

  • Notermans S, Chakraborty T, Leimeister-Wächter M, Dufrenne J, Heuvelmann KJ, Maas H, Jansen W, Wernars K, Guinee P (1989) Specific gene probe for detection of biotyped and serotypedListeria strains. Appl Environ Microbiol 55:902–906

    PubMed  CAS  Google Scholar 

  • Osborn MJ, Gander JE, Parisi E, Carson J (1972) Mechanism of assembly of the outer membrane ofSalmonella typhimurium. J Biol Chem 247:3962–3972

    PubMed  CAS  Google Scholar 

  • Park SS, Wong SL, Wang LF, Doi RH (1989) TheBacillus subtilis subtilisin gene (aprE) is expressed from a σA43) promoter in vitro and in vivo. J Bacteriol 171:2657–2665

    PubMed  CAS  Google Scholar 

  • Power SD, Adams RM, Wells JA (1986) Secretion and autoproteolytic maturation of subtilisin. Proc Natl Acad Sci USA 83:3096–3100

    Article  PubMed  CAS  Google Scholar 

  • Russell AJ, Thomas PG, Fersht AR (1987) Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering. J Mol Biol 193:803–813

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson HR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Smith EL, DeLange RJ, Evans WH, Landon M, Markland FS (1968) Subtilisin Carlsberg V. The complete sequence; comparison with subtilisin BPN′; evolutionary relationships. J Biol Chem 243:2184–2191

    PubMed  CAS  Google Scholar 

  • Stahl ML, Ferrari E (1984) Replacement of theBacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158:411–418

    PubMed  CAS  Google Scholar 

  • Stanssens P, Opsomer C, McKeown YM, Kramer W, Zabeau M, Fritz HJ (1989) Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped-duplex DNA method using alternating selectable markers. Nucleic Acids Res 17:4441–4454

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Vasantha N, Thompson LD (1986) Secretion of a heterologous protein fromBacillus subtilis with the aid of protease signal sequences. J Bacteriol 165:837–842

    PubMed  CAS  Google Scholar 

  • Vasantha N, Thompson LD, Rhodes C, Banner C, Nagle J, Filpula D (1984) Genes for alkaline protease and neutral protease fromBacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159:811–819

    PubMed  CAS  Google Scholar 

  • Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY (1983) Cloning, sequencing, and secretion ofBacillus amyloliquefaciens subtilisin inBacillus subtilis. Nucleic Acids Res 11:7911–7925

    PubMed  CAS  Google Scholar 

  • Wells JA, Powers DB, Bott RR, Katz BA, Ultsch MH, Kossiakoff AA, Power SD, Adams RM, Heyneker HH, Cunningham BC, Miller JV, Graycar TP, Estell DA (1987a) Protein engineering of subtilisin. In: Oxender DL, Fox CF (eds) Protein engineering. Alan R Liss, New York, pp 279–287

    Google Scholar 

  • Wells JA, Cunningham BC, Graycar TP, Estell DA (1987b) Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci USA 84:5167–5171

    Article  PubMed  CAS  Google Scholar 

  • Wong SL, Doi RH (1986) Determination of the signal peptidase cleavage site in the preprosubtilisin ofBacillus subtilis. J Biol Chem 261:10176–10181

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.W. Lengeler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schülein, R., Kreft, J., Gonski, S. et al. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme. Molec. Gen. Genet. 227, 137–143 (1991). https://doi.org/10.1007/BF00260718

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260718

Key words

Navigation