Skip to main content
Log in

Expression of the recA gene of Escherichia coli in several species of gram-negative bacteria

  • A short communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A broad host range plasmid containing an operon fusion between the recA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria — 30 species belonging to 20 different genera — to study the expression of the recA gene after DNA damage. These included species of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae and Azotobacteraceae. Results obtained show that all bacteria tested, except Xanthomonas campestris and those of the genus Rhodobacter, are able to repress and induce the recA gene of E. coli in the absence and in the presence of DNA damage, respectively. All these data indicate that the SOS system is present in bacterial species of several families and that the LexA-binding site must be very conserved in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bagdasarian M, Timmis KN (1982) Host: vector system for gene cloning in Pseudomonas. Curr Top Microbiol Immunol 96:47–67

    Google Scholar 

  • Barbé J, Gibert I, Llagostera M, Guerrero R (1987) DNA repair systems in the phototrophic bacterium Rhodobacter capsulatus. J Gen Microbiol 133:961–966

    Google Scholar 

  • Barbé J, Fernandez de Henestrosa AR, Calero S, Gibert I (1991) Chromogenic method for rapid isolation of recA-like mutants of gram-negative bacteria. J Bacteriol. 173:404–406

    Google Scholar 

  • Better M, Helinski DR (1983) Isolation and characterization of the recA gene of Rhizobium meliloti. J Bacteriol 155:311–316

    Google Scholar 

  • Brent R, Ptashne M (1981) Mechanism of action of the lexA product. Proc Nail Acad Sci USA 78:4204–4208

    Google Scholar 

  • Calero S, Gari E, Gibert I, Barbé J (1989) Expression of the metacleavage pathway operon of the TOL plasmid of Pseudomonas putida in the phototrophic bacterium Rhodobacter sphaeroides. J Biotechnol 12:231–246

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Eitner G, Adler B, Lanzov VA, Hofeimester (1982) Interspecies recA protein substitution in Escherichia coli and Proteus mirabilis. Mol Gen Genet 185:482–486

    Google Scholar 

  • Freudi R, Braun G, Honoré N, Cole ST (1987) Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene 54:31–40

    Google Scholar 

  • Gibert I, Calero S, Barbé J (1990) Measurement of in vivo expression of nrdA and nrdB genes of Escherichia coli by using lacZ gene fusions. Mol Gen Genet 220:400–408

    Google Scholar 

  • Lewington J, Day MJ (1986) A rapid electrophoretic method for the measurement of plasmid copy number. Lett Appl Microbiol 3:109–112

    Google Scholar 

  • Little JW (1984) Autodigestion of lexA and phage repressors. Proc Natl Acad Sci USA 81:1375–1379

    Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22

    Google Scholar 

  • Little JW, Edmiston SH, Pacelli LZ, Mount DW (1980) Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Nail Acad Sci USA 77:3225–3229

    Google Scholar 

  • Lodge J, Williams R, Bell A, Chan B, Busby S (1990) Comparison of promoter activities in Escherichia coli and Pseudomonas aeruginosa: use of a new broad-host-range promoter-probe plasmid. FEMS Microbiol Lett 67:221–226

    Google Scholar 

  • McEvoy JL, Thurn KK, Chatterjee AK (1987) Expression of the E. coli lexA + gene in Erwinia carotovora subsp. carotovora and its effect on production of pectin lyase and carotovoricin. FEMS Microbiol Lett 42:205–208

    Google Scholar 

  • Miles C, Mountain A, Sastry GRK (1986) Cloning and characterization of the recA gene of Agrobacterium tumefaciens C58. Mol Gen Genet 204:161–165

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sano Y, Kageyama M (1987) The sequence and function of the recA gene and its protein in Pseudomonas aeruginosa PAO. Mol Gen Genet 208:412–419

    Google Scholar 

  • Schneider K, Beck CF (1987) New expression vectors for identifying and testing signal structures for initiation and termination of transcription. Methods Enzymol 153:452–461

    Google Scholar 

  • Sedgwick SG, Goodwin PA (1985) Interspecies regulation of the SOS response by the E. coli lexA + gene. Mutat Res 145:103–106

    Google Scholar 

  • Starr MP, Stolp H, Triiper HG, Balows A, Schlegel HG (1981) The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Springer Verlag, Berlin

    Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    Google Scholar 

  • Witkin EM (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869–907

    Google Scholar 

  • Zhao XJ, McEntee K (1990) DNA sequence analysis of the recA genes from Proteus vulgaris, Erwinia carotovora, Shigella fexneri and Escherichia coli B/r. Mol Gen Genet 222:369–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Henestrosa Fernandez, A.R., Calero, S. & Barbé, J. Expression of the recA gene of Escherichia coli in several species of gram-negative bacteria. Molec. Gen. Genet. 226, 503–506 (1991). https://doi.org/10.1007/BF00260664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260664

Key words

Navigation