Abstract
If a certain semantic relation (which we call ‘local consequence’) is allowed to guide expectations about which rules are derivable from other rules, these expectations will not always be fulfilled, as we illustrate. An alternative semantic criterion (based on a relation we call ‘global consequence’), suggested by work of J.W. Garson, turns out to provide a much better — indeed a perfectly accurate — guide to derivability.
Similar content being viewed by others
References
Belnap, N.D. and G.J. Massey (1990): ‘Semantic Holism’, Studia Logica 49, 67–82.
Belnap, N.D. and R.H. Thomason (1963): ‘A Rule-Completeness Theorem’, Notre Dame Journal of Formal Logic 4, 39–43.
Blamey, S.R. (1986): ‘Partial Logic’, pp. 1–70 in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. III, D. Reidel Publ. Co.: Dordrecht.
Carnap, R. (1943): Formalization of Logic, reprinted in: Introduction to Semantics Logic and Formalization of Logic, Harvard University Press: Cambridge, Mass. 1961.
Dunn, J.M. and A. Gupta (eds.) (1990): Truth or Consequences: Essays in Honor of Nuel Belnap, Kluwer: Dordrecht.
Gabbay, D.M. (1978): ‘What is a Classical Connective?’, Zeitschr. für math. Logik und Grundlagen der Math. 24, 37–44.
Gabbay, D.M. (1981): Semantical Investigations in Heyting's Intuitionistic Logic, Reidel: Dordrecht.
Garson, J.W. (1990): ‘Categorical Semantics’, pp. 155–175 in Dunn and Gupta (1990).
Humberstone, I.L. (1992): Review of Dunn and Gupta (1990), Australasian Journal of Philosophy 70, 364–366.
Łoś, J. and R. Suszko (1958): ‘Remarks on Sentential Logics’, Indagationes Mathematicae 20, 177–183.
Scott, D.S. (1974a): ‘Rules and Derived Rules’, pp. 147–161 in S. Stenlund (ed.), Logical Theory and Semantic Analysis, Reidel: Dordrecht.
Scott, D.S. (1974b): ‘Completeness and Axiomatizability in Many-Valued Logic’, in L. Henkin et al. (eds), Procs. of the Tarski Symposium, American Math. Soc.: Providence, Rhode Island.
Segerberg, K. (1968): ‘Propositional Logics Related to Heyting's and Johansson's’, Theoria 34, 26–61.
Shoesmith, D.J. and T.J. Smiley (1978): Multiple Conclusion Logic, Cambridge University Press: Cambridge, England.
Wang, H. (1965): ‘Note on Rules of Inference’, Zeitschr.für math. Logik und Grundlagen der Math. 11, 193–196.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Humberstone, L. Valuational semantics of rule derivability. J Philos Logic 25, 451–461 (1996). https://doi.org/10.1007/BF00257380
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00257380