Skip to main content

Advertisement

Log in

Computer-assisted primary and secondary structure analyses of DNA polymerases of herpes simplex, Epstein-Barr and varicella zoster viruses reveal conserved domains with some homology to DNA-binding domain in E. coli DNA pol I

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The primary and secondary structure of herpes simplex virus type 1 (HSV-1), varicella-zoster (VZV) and Epstein-Barr virus (EBV) DNA polymerases was calculated by means of computer programs. The comparison of HSV-1 polymerase (pol) sequence to the known primary and tertiary structure of E. coli DNA pol I revealed five short homologous sequences, one of which coincided with the α-helical structure of the DNA-binding domain of E. coli DNA pol. Comparison by primary and secondary structure computer programs of the three DNA polymerases coded by herpesviruses HSV-1, VZV and EBV led to the identification of polypeptide sequences shared by the three DNA pols. In a similar way, the secondary structure of the DNA pol polypeptide in the vicinity of the mutation leading to PAA resistance in HSV-1 DNA pol helped to identify the role of this sequence in the binding of phosphate donated by the nucleoside triphosphate molecule which binds to the DNA pol. Although the computer secondary structure programs are about 60% accurate, it was possible to obtain new information on the properties of certain domains in the DNA polymerases of HSV-1, VZV and EBV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aa:

amino acids

EBV:

Epstein-Barr virus

HSV-1:

herpes simplex virus type 1

Mr :

molecular weight

PAA:

phosphonoacetic acid

PFA:

phosphonoformic acid

pol:

polymerase

VZV:

varicella-zoster virus

References

  1. Gibbs J.S., Chiou H.C., Hall J.D., Mount D.W., Retondo M.J., Weller S.K. & Coen D.M., Proc Nat Acad Sci USA 82, 7969–7973, 1985.

    Google Scholar 

  2. Quinn J.P. & McGeoch D.J., Nucl Acids Res 13, 8143–8163, 1985.

    Google Scholar 

  3. Knopf C., Nucl Acids Res 14, 8225–8226, 1986.

    Google Scholar 

  4. Knopf. J. Gen Virol. 68, 1429–1433, 1987.

    Google Scholar 

  5. Earl P.L., Jones E.V. & Moss B., Proc Nat Acad Sci USA 83, 3659–3663, 1986.

    Google Scholar 

  6. Coen D.M., Furman P.A., Aschman D.P. & Schaffer P.A., Nucl Acid Res 11, 5287–5297, 1983.

    Google Scholar 

  7. Frank K.B., Derse D.D., Bastow K.F. & Cheng Y.C., J Biol Chem 259, 13282–13286, 1984.

    Google Scholar 

  8. Krokau H., Schaffer P. & DePamphilis M.L., Biochemistry 18, 4431–4433, 1979.

    Google Scholar 

  9. Davison A.J. & Scott J.E., J Gen Virol 67, 1759–1816, 1986.

    Google Scholar 

  10. Argos P., Tucker A.D. & Philipson L., Virology 149, 208–216, 1986.

    Google Scholar 

  11. Kyte J. & Doolittle R.F., J Mol Biol., 157, 105–132, 1982.

    Google Scholar 

  12. Hopp T.P. & Woods K.R., Proc Nat Acad Sci USA 78, 3824–3828, 1981.

    Google Scholar 

  13. Ollis D.L., Brick P., Hamlin R., Xuong N.G. & Steitz T.A., Nature 313, 762–766, 1985.

    Google Scholar 

  14. Chou P.Y. & Fasman G.D., Adv Enzymol 47, 45–147, 1978.

    Google Scholar 

  15. Garnier J., Osguthorpe D.J. & Robson B., J Mol Biol 120, 97–120, 1978.

    Google Scholar 

  16. Ollis D.L., Kline C. & Steitz T.A., Nature 313, 818–819, 1985.

    Google Scholar 

  17. Wolf H., Modrow S., Motz M., Jameson B., Hermann G. & Fortsch B., Cabios (in press).

  18. Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.G., Hatfull G., Hudson G.S., Satchwell S.C., Seguin C., Tuffnell P.S. & Barrell B.G., Nature 310, 207–211, 1984.

    Google Scholar 

  19. Needleman S.B. & Wunsch C.D., J Mol Biol 48, 443–453, 1970.

    Google Scholar 

  20. Joyce C.M., Kelley W.S. & Grindley N.D.F., J Biol Chem 257, 1958–1964, 1982.

    Google Scholar 

  21. Brown W.E., Stump K.H. & Kelley W.S., J Biol Chem 257, 1965–1972, 1982.

    Google Scholar 

  22. Devereux J., Haeberlin P. & Smithies O., Nucl Acid Res 12, 387–395, 1984.

    Google Scholar 

  23. Maizel J.V. & Lenk R.P., Proc Nat Acad Sci 78, 7665–7669, 1981.

    Google Scholar 

  24. McKeon F.D., Kirschner M.W. & Caput D., Nature 319, 463–468, 1986.

    Google Scholar 

  25. Shlomai J., Asher Y., Gordon Y.J., Olshevsky U. & Becker Y., Virology 66, 330–335, 1975.

    Google Scholar 

  26. Pabo C.O. & Sauer T., Ann Rev Biochem 53, 293–321, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Requests for reprints should be addressed to Professor Yechiel Becker, Department of Molecular Virology, Faculty of Medicine, The Hebrew University, P.O. Box 1172, 91010 Jerusalem, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y. Computer-assisted primary and secondary structure analyses of DNA polymerases of herpes simplex, Epstein-Barr and varicella zoster viruses reveal conserved domains with some homology to DNA-binding domain in E. coli DNA pol I. Virus Genes 1, 351–367 (1988). https://doi.org/10.1007/BF00257098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00257098

Key words

Navigation