Skip to main content
Log in

Cortical oxygen pressure during acute venous kindney obstruction

  • Originals
  • Published:
Urological Research Aims and scope Submit manuscript

Summary

Different degrees of obstruction to the renal venous drainage were produced in rabbits and the cortical oxygen pressures in the kidney measured with the multiple-wire surface electrode of Kessler and Luebbers. Sudden complete occlusion of the inferior vena cava (IVC) above the renal vein, or above and below the renal vein simultaneously, produced a slight decrease of about 27%. Sudden complete occlusion of the renal vein itself caused a severe decrease of 67% (obstruction near the IVC) or 100% (obstruction near the kidney). One hour later different degrees of incomplete recovery were found. The PO2 curves for the renal cortex revealed different pressure-dependent pathophysiological changes in the microcirculation. The multiple-wire surface electrode may well prove to be of use during renal surgery in which venous obstruction is a critical factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe Y, Kishimoto T, Yamamoto K, Ueda J (1973) Intrarenal distribution of blood flow during ureteral and venous pressure elevation. Am J Physiol 224:746

    Google Scholar 

  2. Bálint P, Fekete A, Molnár L, Szöcs E (1971) Intrarenal distribution of vascular resistance in the dog. Acta Physiol Acad Sci Hung 40:53

    Google Scholar 

  3. Bank N, Yarger WE, Aynedjian HS (1971) A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction. J Clin Invest 50:294

    Google Scholar 

  4. Bell RD, Ornitz RD, Trautman R, Andersen IL, Keyl MJ (1971) The significance of the renal pelvis and intrarenal veins in renal lymph formation. Invest Urol 9:149

    Google Scholar 

  5. Blake WD, Wégeria R, Keating RP, Ward HP (1949) Effect of increased renal venous pressure on renal function. Am J Physiol 157:1

    Google Scholar 

  6. Darewicz J, Cylwik B, Gruszecki W (1976) Effect of clamping of the renal vein in dogs on certain biochemical and histopathological changes. Int Urol Nephrol 8:271

    Google Scholar 

  7. Deetjen P, Kramer K (1961) Die Abhängigkeit des O2-Verbrauches der Niere von der Na-Rückresorption. Pflügers Arch 273:636

    Google Scholar 

  8. Gertz KH, Mangos JA, Braun G, Pagel HD (1966) Pressure in the glomerular capillaries and its relation to arterial blood pressure. Pflügers Arch 288:369

    Google Scholar 

  9. Gottschalk CW, Mylle M (1956) Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol 185:430

    Google Scholar 

  10. Hall P, Selkurt EE (1951) Effects of partial graded venous obstruction on electrolyte by the dog's kidney. Am J Physiol 164:143

    Google Scholar 

  11. Hayase S (1976) Effect of venous congestion and acute hemorrhage on body fluid equilibrium between tissue and blood in skeletal muscle and kidney. Jpn Circ J 40:849

    Google Scholar 

  12. Hirano T (1976) Experimental studies of effects of acute renal venous congestion on renal function with particular reference to renal arterio-venous plasma sodium difference. Jpn Circ J 40:1331

    Google Scholar 

  13. Honda N, Aizawa Ch, Morikawa A, Yoshitoshi Y (1970) Effect of elevated venous pressure on medullary osmolar gradient in rabbit kidney. Am J Physiol 218:708

    Google Scholar 

  14. Kessler M, Höper J, Schäfer D, Starlinger H (1974) Sauerstoff-transport im Gewebe. In: Ahnefeld SW, Burri C, Dick W, Halmágyi M: Mikrozirkulation. Springer, Berlin Heidelberg New York, p 36

    Google Scholar 

  15. Kessler M (1974) Oxygen supply to tissue in normoxia and in oxygen deficiency. Microvasc Res 8:283

    Google Scholar 

  16. Kessler M (1974) Lebenserhaltende Mechanismen bei Sauerstoffmangel und bei Störungen der Organdurchblutung. Mitteilungen aus der Max-Planck-Gesellschaft 6:444

    Google Scholar 

  17. Kessler M, Höper J, Krumme BA (1976) Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184

    Google Scholar 

  18. Kishimoto T, Maekawa M, Abe Y, Yamamoto K (1973) Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney Int 4:259

    Google Scholar 

  19. Kövér G, Hársing LG, Hársing L (1974) Effect of elevated renal venous pressure on intrarenal haemodynamics. Acta Physiol Acad Sci Hung 45:173

    Google Scholar 

  20. Lassen NA, Munck O, Thaysen JH (1961) Oxygen consumption and sodium reabsorption in the kidney. Acta Physiol Scan 51:371

    Google Scholar 

  21. Lewy JE, Windhager EE (1968) Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol 214:943

    Google Scholar 

  22. Mayerson HS (1963) The lymphatic system with particular reference to the kidney. Surg Gynecol Obstet 116:259

    Google Scholar 

  23. Messmer K, Sunder-Plassmann L, Jesch F, Görnandt L, Sinagowitz E, Kessler M (1973) Oxygen supply to the tissues during limited normovolemic hemodilution. Res Exp Med 159:152

    Google Scholar 

  24. Messmer K, Görnandt L, Jesch F, Sinagowitz E, Sunder-Plassmann L, Kessler M Oxygen transport and tissue oxygenation during hemodilution with dextran. (1973) In: Bicher HI, Bruley DF (eds) Oxygen transport to tissue. Advances in experimental medical biology 37A; Plenum Press, New York London p 669

    Google Scholar 

  25. Mullane JF, Gliedman ML (1969) Effect of chronic experimental unilateral renal vein hypertension on renal hemodynamics, concentrating ability, urine flow and sodium excretion. Surgery 66:368

    Google Scholar 

  26. Murphy GP, Johnston GS, Scott WW (1966) The effect of arterial hematocrit alteration on renal blood flow and resistance in normotensive states. J Urol 95:453

    Google Scholar 

  27. Ott CE, Navar G, Guyton AC (1971) Pressures in static and dynamic states from capsules implanted in the kidney. Am J Physiol 221:394

    Google Scholar 

  28. Sinagowitz E (1977) Die lokale Sauerstoffversorgung der Nierenrinde bei Hydronephrose und Nierenischämie; ihre klinische Bedeutung in der Urologie. Habilitationsschrift, Universität Freiburg

  29. Suwa N, Takahashi T (1971) Morphological and morphometrical analysis of circulation in hypertension and ischemic kidney. Büchner F (ed) Urban & Schwarzenberg München Berlin Wien

    Google Scholar 

  30. Swann HG, Montgomery AV, Lowry JS (1951) Effect of renal occlusion on intrarenal pressure. Proc Soc Exp Biol Med 75: 773

    Google Scholar 

  31. Swann HG (1961) The functional distension of the kidney: A review. Tex Rep Biol Med 18:566

    Google Scholar 

  32. Thurau K, Wober E (1962) Zur Lokalisation der autoregulativen Widerstandsänderungen an der Niere. Pflügers Arch Ges Physiol 274:553

    Google Scholar 

  33. Thurau K, Henne G (1964) Die transmurale Druckdifferenz der Widerstandsgefäße als Parameter der Widerstandsregulation in der Niere. Pflügers Arch Ges Physiol 279:156

    Google Scholar 

  34. Wathen RL, Selkurt EE (1969) Intrarenal regulatory factors of salt excretion during renal venous pressure elevation. Am J Physiol 216:1517

    Google Scholar 

  35. Winton FR (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72:49

    Google Scholar 

  36. Wirz H (1956) Die Druckverhältnisse der normalen Niere. Schweiz Med Wochenschr 86:377

    Google Scholar 

  37. Yoshitoshi Y, Honda N, Morikawa A, Seki K (1966) Alterations in the renal hemodynamics induced by increases renal vein pressures in the rabbit kidney. Jpn Heart J 7:289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lent, V., Kessler, M. Cortical oxygen pressure during acute venous kindney obstruction. Urol. Res. 10, 7–11 (1982). https://doi.org/10.1007/BF00256517

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00256517

Key words

Navigation