Skip to main content
Log in

Influence of deformation on physical aging of polycarbonate

2. Volume recovery near ambient temperature

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Volume recovery of polycarbonate samples has been investigated by dilatometric and density measurements near ambient temperature. The volume changes with time have been measured either after heating above Tg and quenching, or after cold drawing at ambient temperature. Cold drawing drastically increases the volume recovery rate of polycarbonate, as compared with the rate observed after quenching. This is quite similar to the behavior previously reported on physical aging measured by dynamic mechanical tests (1). The observed decrease of specific volume after cold drawing can be explained by a densification effect due to molecular orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Pixa, C.Goett and D.Froelich, Polymer Bull.14, 53 (1985).

    Google Scholar 

  2. J.D.Ferry, “Viscoelastic Properties of Polymers,” (3rd ed.) John Wiley & Sons New York, 280 (1980).

    Google Scholar 

  3. A.J.Kovacs, Fortschr. Hochpolym. Forsch.3, 394 (1963).

    Google Scholar 

  4. G.Goldbach and G.Rehage, Rheol. Acta 6, 30 (1967).

    Google Scholar 

  5. L.C.E.Struik, “Physical Aging in Amorphous Polymers and Other Materials,” Elsevier Amsterdam (1978).

    Google Scholar 

  6. P. Bowden, in “The Physics of Glassy Polymers,” ed. by R.N. Haward, Applied Science Publishers London, 279 (1973).

    Google Scholar 

  7. R. N. Haward, in “The Physics of Glassy Polymers,” ed. by R.N.Haward, Applied Science Publishers London, 340 (1973).

    Google Scholar 

  8. A.J.Kovacs, J.J.Aklonis, J.M.Hutchinson and A.R.Ramos, J.Polymer Sci.: Polymer Phys.Ed. 17, 1097 (1979).

    Google Scholar 

  9. ASTM Standard D 1505-85.

  10. R.Greiner and F.R.Schwarzl, Rheol.Acta 23, 378 (1984).

    Google Scholar 

  11. K.-H.Hellwege, J.Hennig and W.Knappe, Kolloid-Z.u.Z.f.Polymere 186, 29 (1962).

    Google Scholar 

  12. From fig.20 and 128 in ref.(5).

  13. K.-H.Hellwege, J.Hennig and W.Knappe, Kolloid-Z.u.Z.f.Polymere 188, 121 (1963).

    Google Scholar 

  14. T.E.Brady and G.S.Y.Yeh, J.Appl.Phys. 42, 4622 (1971).

    Google Scholar 

  15. D.G.LeGrand, J.Appl.Polymer Sci. 16, 1367 (1972).

    Google Scholar 

  16. W.A.Spitzig and O.Richmond, Polymer Eng.Sci. 19, 1129 (1979).

    Google Scholar 

  17. R.E.Robertson, J.Phys.Chem. 69, 1575 (1965).

    Google Scholar 

  18. J.M.Powers and R.M.Caddell, Polymer Eng.Sci. 12, 432 (1972).

    Google Scholar 

  19. A.J.Kovacs, J.M.Hutchinson and J.J.Aklonis, in “The Structure of Non-Crystalline Materials,” ed. by P.H.Gaskell, Taylor and Francis London, 153 (1977).

    Google Scholar 

  20. J.P.Mercier and R.Legras, J.Polymer Sci. B8, 645 (1970).

    Google Scholar 

  21. S.Matsuoka, Polymer Eng.Sci. 21, 907 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pixa, R., Grisoni, B., Gay, T. et al. Influence of deformation on physical aging of polycarbonate. Polymer Bulletin 16, 381–387 (1986). https://doi.org/10.1007/BF00255013

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00255013

Keywords

Navigation