Skip to main content
Log in

Mass transfer between a liquid and a binary rotating/fixed disc system in a closed cylinder

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical method is applied to the determination of mass transfer coefficients between a liquid and opposite circular discs, one of which is rotating, enclosed by a cylinder. Local measurements made at the fixed disc confirm flow schemes proposed in the literature. The global mass transfer coefficients are correlated empirically and compared with a literature correlation for nonelectrochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C r :

radial confinement ratio, C r = R T/R F

C v :

vertical confinement ratio, C v = H/R T

C :

concentration of ferricyanide ions (mol m−3)

D :

molecular diffusion coefficient of ferricyanide ions (m2 s−1)

F :

Faraday constant (96 500 A s mol−1)

H :

distance between the discs (m)

i L :

local limiting current density (A m−2)

\(\bar k_{\text{d}} \) :

average mass transfer coefficient (m s−1)

kd :

local frictional mass transfer coefficient (m s−1)

k d(r):

local mass transfer coefficient (m s−1)

N :

rotating disc velocity (r.p.m.)

r :

radial coordinate (m)

R :

radius of disc (m)

Re H :

Reynolds number based on H (= ωH 2/ν)

Re R :

Reynolds number based on R (= ωR 2/ν)

\(\overline {Sh_{\text{H}} } \) :

average Sherwood number based on H (= \(\bar k_{\text{d}} \) d H/D))

\(\overline {Sh_{\text{R}} } \) :

average Sherwood number based on R (= \(\bar k_{\text{d}} \) d R/D)

s :

wall velocity gradient s−1

Sc :

Schmidt number (= ν/D)

\(\bar \in \) :

mean porosity

ν:

kinematic viscosity (m2 s−1)

νe :

number of electrons in the electrode reaction

ϱ:

density, (kg m−3)

ω:

angular velocity (s−1)

F:

at the fixed disc

T:

at the rotating disc

°:

at the disc rotating in an infinite media

References

  1. S. L. Soo and N. J. Princeton, Trans. ASME 80 (1958) 287.

    Google Scholar 

  2. J. W. Daily and R. E. Nece, J. Basic Engng. March (1960) 217.

    Google Scholar 

  3. P. F. Tomlan and J. L. Hudson, Chem. Engng. Sci. 26 (1971) 1591.

    Google Scholar 

  4. P. W. Duck, Comput. Fluids 14 (1986) 183.

    Google Scholar 

  5. F. Kreith, J. H. Taylor and J. P. Chong, J. Heat Transfer, Trans. ASME Series C, 81 (1959) 95.

    Google Scholar 

  6. F. Kreith, E. Doughman and H. Kozlowski, J. Heat Transfer, Trans. ASME Series C, 85 (1963) 153.

    Google Scholar 

  7. G. D. Lehmkuhl and J. L. Hudson, Chem. Engng. Sci. 26 (1971) 1601.

    Google Scholar 

  8. H. Matsuda, J. Electroanal. Chem. 38 (1972) 159.

    Google Scholar 

  9. K. A. Smith and C. K. Colton, AIChE Journal 18(5) (1972) 949.

    Google Scholar 

  10. C. K. Colton and K. A. Smith, AIChE J. 18(5) (1972) 958.

    Google Scholar 

  11. T. G. Kaufmann and E. F. Leonard, AIChE J. 14(3) (1968) 421.

    Google Scholar 

  12. R. E. W. Jansson and G. A. Ashworth, Electrochim. Acta 22 (1977) 1301.

    Google Scholar 

  13. R. E. W. Jansson and R. J. Marshall, J. Appl. Electrochem. 8 (1978) 287.

    Google Scholar 

  14. E. B. Cavalcanti, Thesis, in preparation, Université de Rennes I, France.

  15. A. J. Arvia and S. L. Marchiano, ‘Modern Aspects of Electrochemistry’, Vol. 6, (edited by J. O'M. Bockris and B. E. Conway) Plenum Press, New York (1971).

  16. S. Langlois, J. O. Nanzer and F. Coeuret, J. Appl. Electrochem. 19 (1989) 736.

    Google Scholar 

  17. A. Bensmaili, Thesis, Université de Rennes I, Rennes, France (1991).

    Google Scholar 

  18. F. Coeuret, Introducción a la Ingeniería Electroquímica (Ed. Reverté), Barcelona, Spain (1992).

    Google Scholar 

  19. D. Gruhne, Nachr. Akad. Wiss. Goettingen, Math-physik, K1, IIa (1956).

  20. J. Pecheux, Journal de Mécanique 11(4) (1972) 36.

    Google Scholar 

  21. F. Schultz-Grunow, Zeitschr. f. Angew. Math. und Mech. 15 (1935) 191.

    Google Scholar 

  22. V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, E.B., Coeuret, F. Mass transfer between a liquid and a binary rotating/fixed disc system in a closed cylinder. J Appl Electrochem 26, 655–663 (1996). https://doi.org/10.1007/BF00253465

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253465

Keywords

Navigation