Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 7, pp 676–684 | Cite as

A three-segment electrodiffusion probe in axisymmetric flow with stagnation and separation

  • F. Baleras
  • C. Deslouis
  • B. Tribollet
  • V. Sobolik
Papers

Abstract

Calculation is presented of the influence of the normal velocity component on the directional characteristics of a three-segment electrochemical probe in the vicinity of a stagnation or a separation point. The results obtained here for a 2D flow corresponding to an axisymmetric flow having a stagnation point show quantitative differences, especially in the stagnation region, with respect to an earlier calculation performed on a 2D flow corresponding to a planar flow having a stagnation line. An experimental study with such a probe is then reported which demonstrates the possibility of this arrangement in the stagnation region of an immersed jet.

Keywords

Physical Chemistry Experimental Study Velocity Component Stagnation Point Quantitative Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Wein and V. Sobolik, Collect. Czech. Chem. Comm. 52 (1987) 2169–2180.Google Scholar
  2. [2]
    V. Sobolik, P. Mitschka and T. Menzel, ‘tMethod of manufacture of segmented probe with circular cross-section’, Czech. Patent AO 262 823 (1989).Google Scholar
  3. [3]
    T. Menzel, V. Sobolik, O. Wein and U. Onken, Chem. Ing. Tech. 59 (1987) 492–493.CrossRefGoogle Scholar
  4. [4]
    C. Deslouis, O. Gil and V. Sobolik, Int. J. Heat Mass Transfer 33 (1990) 1363–1366.Google Scholar
  5. [5]
    O. Wein and V. Sobolik, Collect. Czech. Chem. Comm. 54 (1989) 3043–3060.Google Scholar
  6. [6]
    V. Sobolik, O. Wein, O. Gil and B. Tribollet, Exp. in Fluids 9 (1990) 43–48.Google Scholar
  7. [7]
    H. Schlichting, ‘Boundary Layer Theory’, McGraw Hill, New York (1968) p. 90.Google Scholar
  8. [8]
    A. Acrivos, Phys. Fluids, 3 (1960) 657–658.CrossRefGoogle Scholar
  9. [9]
    J. Newman, ‘Electrochemical Systems’, Prentice Hall, Englewood Cliffs, NJ (1991) p. 359.Google Scholar
  10. [10]
    O. Wein, Coll. Czech. Chem. Commun. 55 (1990) 2404.Google Scholar
  11. [11]
    M. A. Levêque, Ann. Mines 13 (1928) 201–299, 305–362, 381–415.Google Scholar
  12. [12]
    V. Bouet, C. Gabrielli, G. Maurin and H. Takenout, J. Electroanal. Chem. 340 (1992) 325–331.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • F. Baleras
    • 1
  • C. Deslouis
    • 1
  • B. Tribollet
    • 1
  • V. Sobolik
    • 2
  1. 1.UPR 15 du CNRS, ‘Physique des Liquides et Electrochimie’Untversité P. et M. CurieParis Cédex 05France
  2. 2.Institute of Chemical Process FundamentalsAcademy of Sciences of the Czech RepublicPrague 06Czech Republic

Personalised recommendations