Journal of Applied Electrochemistry

, Volume 24, Issue 7, pp 670–675 | Cite as

Study of pulsing flow in a trickle bed using the electrodiffusion technique

  • N. A. Tsochatzidis
  • A. J. Karabelas


An electrochemical technique is employed for measuring local, instantaneous liquid-solid mass transfer coefficients in downward cocurrent gas-liquid flow through a packed bed under pulsing flow conditions. The technique involves specially designed electrodes of the same dimensions as the packing material. Also microelectrodes on the surface of a particle are tested for flow diagnostics in the microscale. The feasibility of the method is examined. Interpretation of measurements from various electrodes provides information on the pattern of mass transfer and liquid distribution in the packing.


Physical Chemistry Mass Transfer Transfer Coefficient Flow Condition Mass Transfer Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


diameter of the bed


molecular diffusivity


particle diameter


liquid-solid mass transfer coefficient


distance from the wall of the bed


liquid Reynolds number (ULdpρLL)


Schmidt number (µLLDL)


Sherwood number (Ksdp/DL)


liquid superficial velocity

Greek symbols


dynamic viscosity of the liquid


density of the liquid


wetted fraction of the cathode


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Herskowitz and J. M. Smith, AIChE J. 29 (1983) 1.CrossRefGoogle Scholar
  2. [2]
    J. C. Charpentier, Chem. Eng. J. 11 (1976) 161.Google Scholar
  3. [3]
    A. Gianetto, G. Baldi, V. Specchia and S. Sicardi, AIChE J. 24 (1978) 1087.CrossRefGoogle Scholar
  4. [4]
    H. Hofmann, Int. Chem. Eng. 17 (1977) 19.Google Scholar
  5. [5]
    A. Gianetto and V. Specchia, Chem. Eng. Sci. 47 (1992) 3197.Google Scholar
  6. [6]
    J. M. de Santos, T. R. Melli and L. E. Scriven, Annu. Rev. Fluid Mech. 23 (1991) 233.CrossRefGoogle Scholar
  7. [7]
    V. G. Rao and A. A. H. Drinkenburg, AIChE J. 31 (1985) 1059.Google Scholar
  8. [8]
    T. S. Chou, F. L. Worley, Jr. and D. Luss, Ind. Eng. Chem. Fundam. 18 (1979) 279.CrossRefGoogle Scholar
  9. [9]
    J. F. Gabitto and N. O. Lemcoff, Chem. Eng. J. 35 (1987) 69.Google Scholar
  10. [10]
    M. A. Latifi, S. Rode, N. Midoux and A. Storck, Chem. Eng. Sci. 47 (1992) 1955.Google Scholar
  11. [11]
    S. L. Gordon, J. S. Newman and C. W. Tobias, Ber. Bunsenges. Phys. Chem. 70 (1966) 414.Google Scholar
  12. [12]
    J. R. Selman and C. W. Tobias, ‘Advances in Chemical Engineering’ Vol. 10, Academic Press, New York (1978) pp. 211–318.Google Scholar
  13. [13]
    V. Specchia, G. Baldi and A. Gianetto, Ind. Eng. Chem. Process Des. Dev. 17 (1978) 362.Google Scholar
  14. [14]
    T. Hirose, Y. Mori and Y. Sato, J. Chem. Eng. Jpn. 9 (1976) 220.Google Scholar
  15. [15]
    K. R. Jolls and T. J. Hanratty, AIChE J. 15 (1969) 199.CrossRefGoogle Scholar
  16. [16]
    A. J. Karabelas, T. H. Wegner and T. J. Hanratty, Chem. Eng. Sci. 26 (1971) 1581.Google Scholar
  17. [17]
    Idem, ibid. 28 (1973) 673.Google Scholar
  18. [18]
    T. R. Melli, J. M. de Santos, W. B. Kolb and L. E. Scriven, Ind. Eng. Chem. Res. 29 (1990) 2367.CrossRefGoogle Scholar
  19. [19]
    P. G. Lutran, K. M. Ng and E. P. Delikat, ibid. 30 (1991) 1270.CrossRefGoogle Scholar
  20. [20]
    N. A. Tsochatzidis and A. J. Karabelas, in Proc. 2nd world conf. on ‘experimental heat transfer, fluid mechanics and thermodynamics’ (edited by J. F. Keffer, R. K. Shah, E. N. Ganic) Elsevier, Amsterdam (1991) pp. 1515–1522.Google Scholar
  21. [21]
    Y. Lemay, G. Pineault and J. A. Ruether, Ind. Eng. Chem. Process Des. Dev. 14 (1975) 280.CrossRefGoogle Scholar
  22. [22]
    W. B. Sims, F. G. Schulz and D. Luss, Ind. Eng. Chem. Res. 32 (1993) 1895.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. A. Tsochatzidis
    • 1
    • 2
  • A. J. Karabelas
    • 1
    • 2
  1. 1.Chemical Process Engineering Research InstituteAristotle University of TessalonikiThessalonikiGreece
  2. 2.Department of Chemical EngineeringAristotle University of TessalonikiThessalonikiGreece

Personalised recommendations