Journal of Applied Electrochemistry

, Volume 24, Issue 7, pp 658–665 | Cite as

Local enhancement of liquid-to-wall mass transfer by a single gas bubble

  • A. Ben Youssef
  • U. Haebel
  • Ph. Javet


Local liquid-to-wall mass transfer enhancement by a single bubble was studied. Both photographic and local current measurements were taken. The effects of the bubble form, wake and trajectory were analysed for vertical and down-facing inclined electrodes. For angles lower than 40°, bubbles rise over the surface with small hops of regular amplitude. High current increases were observed where the bubble hits the electrode. For higher angles, the bubble glides, producing high constant currents.


Physical Chemistry Mass Transfer High Angle Current Measurement Current Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


electrode surface area (cm2)


concentration in bulk (mol cm−3)


diffusivity (cm2 s−1)


bubble equivalent diameter (cm)


bubble transverse diameter (cm)


Faraday's constant (A s mol−1)


current density (A cm−2)


natural convection limiting current (A)


current peaks averaged on the nine MEs (A)


mass transfer coefficient (cm s−1)


Morton number, gν4ρ−1σ−3


valence change in electrochemical reaction


Reynolds number, ρVDeqμ−1


time (s)


bubble velocity (cm s−1)

Greek symbols


inclination angle (degree)


liquid density (g cm−3)


dynamic viscosity (g cm−1 s)


kinematic viscosity (cm2 s−1)


surface tension (g s−2)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Ibl, Chem. Ing. Techn. 35 (1963) 353.CrossRefGoogle Scholar
  2. [2]
    G. M. Cook, AIChE Symposium Series 74 (1978) 140.Google Scholar
  3. [3]
    N. Ibl, E. Adam, J. Venczel and E. Schlach, Chem. Ing. Techn. 43 (1971) 202.Google Scholar
  4. [4]
    N. Ibl and J. Venczel, Metalloberfläch 24 (1970) 365.Google Scholar
  5. [5]
    N. Ibl, R. Kind and E. Adam, An. Quim. 71 (1975) 1008.Google Scholar
  6. [6]
    L. Sigrist, O. Dossenbach and N. Ibl, Int. J. Heat Mass Transfer 22 (1979) 1393.CrossRefGoogle Scholar
  7. [7]
    D. J. Economou and R. C. Alkire, J. Electrochem. Soc. 132 (1985) 601.Google Scholar
  8. [8]
    G. H. Sedahmed, H. A. Farag, A. A. Zatout and F. A. Katkout, J. Appl. Electrochem. 16 (1986) 374.CrossRefGoogle Scholar
  9. [9]
    O. N. Cavatorta and U. Bohm, ibid. 17 (1987) 340.CrossRefGoogle Scholar
  10. [10]
    S. Piovano, O. N. Cavatorta and U. Bohm, ibid. 18 (1988) 128.CrossRefGoogle Scholar
  11. [11]
    O. N. Cavatorta and U. Böhm, Chem. Eng. Res. Des. 66 (1988) 265.Google Scholar
  12. [12]
    Idem, J. Appl. Electrochem. 21 (1991) 40.CrossRefGoogle Scholar
  13. [13]
    A. Shah and J. Jorne, J. Electrochem. Soc. 13 (1989) 144.Google Scholar
  14. [14]
    W. Kast, Chem. Ing. Techn. 35 (1963) 785; Int. J. Heat Mass Transfer 5 (1962) 329.Google Scholar
  15. [15]
    W. D. Deckwer, Chem. Eng. Sci. 35 (1980) 1341.Google Scholar
  16. [16]
    C. W. Tobias, AIChE J. 34 (1988) 1981.Google Scholar
  17. [17]
    P. Larpin, Thesis no 465, EPF Lausanne (1982).Google Scholar
  18. [18]
    D. C. Blanchard and L. D. Syzdek, Chem. Eng. Sci. 32 (1977) 1109.Google Scholar
  19. [19]
    P. Grassmann, ‘Physical Principles of Chemical Engineering’, Pergamon Press, Oxford (1974).Google Scholar
  20. [20]
    S. W. Sears and R. A. Hartunian, J. Fluid Mech. 3 (1957) 27.Google Scholar
  21. [21]
    W. L Haberman and R. K. Morton, Amer. Soc. Civ. Eng. Paper 2799 (1954) 227.Google Scholar
  22. [22]
    D. Bhaga and M. E. Weber, J. Fluid. Mech. 105 (1981) 61.Google Scholar
  23. [23]
    L. Fan and K. Tsuchiya, Chem. Eng. Sci. 43 (1988) 1167.Google Scholar
  24. [24]
    G. R. Rigby and C. E. Capes, Can. J. Chem. Eng. 48 (1970) 343.Google Scholar
  25. [25]
    L. Fan and K. Tsuchiya, Chem. Eng. Sci. 43 (1988) 2893.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Ben Youssef
    • 1
  • U. Haebel
    • 1
  • Ph. Javet
    • 1
  1. 1.Institute of Chemical EngineeringSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations