Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 7, pp 632–638 | Cite as

Study of mass transfer in viscoelastic liquids by segmented electrodiffusion velocity probes

  • V. Sobolík
  • S. Martemyanov
  • G. Cognet
Papers

Abstract

Mass transfer on a circular cylinder with a diameter of 0.52 mm was studied in polymer solutions by measuring the directional characteristics of a three-segment electrodiffusion velocity probe. The free stream velocity was varied in the range 0.01–0.31 m s−1 and the polyacrylamide concentration in the range 0.001–1% (by mass). A small amount of polymer produced large changes in mass transfer distribution on the cylinder in comparison to the distribution in Newtonian liquid. In particular it has been shown that the transfer rate in the aft portion of the cylinder is greater than in the front part if the Weissenberg number exceeds some critical value. The situation was identified where the local mass transfer was constant around the cylinder, i.e. the surface was uniformly accessible to diffusion.

Keywords

Polymer Mass Transfer Polyacrylamide Transfer Rate Polymer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. J. Hanratty and J. A. Campbell, ‘Measurement of wall shear stress’ in ‘Fluid mechanics measurements’ (edited by R.J. Goldstein), Hemisphere, Washington (1983).Google Scholar
  2. [2]
    V. E. Nakoryakov, A. P. Burdukov, O. N. Kashinsky and P. I. Geshev, ‘Electrodiffusion method of investigation into the local structure of turbulent flows’ (edited by V. G. Gasenko), Institute of Thermophysics, Novosibirsk (1986) (in Russian).Google Scholar
  3. [3]
    B. M. Grafov, S. A. Martemyanov and L. N. Nekrasov, ‘The turbulent diffusion layer in electrochemical systems’, Nauka, Moscow (1990) (in Russian).Google Scholar
  4. [4]
    B. Py and J. Gosse, C.R. Acad. Sc. Paris 269A (1969) 401.Google Scholar
  5. [5]
    C. Deslouis, F. Huet, O. Gil and B. Tribollet, Experiments in Fluids, in press.Google Scholar
  6. [6]
    V. Sobolik, O. Wein, O. Gil and B. Tribollet, ibid. 9 (1990) 43.Google Scholar
  7. [7]
    V. Sobolik, J. Pauli and U. Onken, ibid 11 (1991) 186.Google Scholar
  8. [8]
    F. E. Jorgensen, DISA Information 27 (Jan. 1982) 15.Google Scholar
  9. [9]
    C. R. Illingworth, ‘Flow at small Reynolds number’ in ‘Laminar boundary layers’ (edited by L. Rosenhead), Clarendon Press, Oxford (1963).Google Scholar
  10. [10]
    H. B. Keller and H. Takami, ‘Numerical studies of steady viscous flow about cylinders’ in ‘Numerical Solutions of Nonlinear Differential Equations’ (edited by D. Greenspan), Prentice-Hall, Englewood Cliffs, NJ (1966).Google Scholar
  11. [11]
    A. C. Hamielec and J. D. Raal, Phys. Fluids 12 (1969) 11.CrossRefGoogle Scholar
  12. [12]
    S. C. R. Dennis and G.-Z. Chang, J. Fluid Mech. 42 (1970) 471.Google Scholar
  13. [13]
    O. Wein and V. Sobolik, Coll. Czech. Chem. Commun. 52 (1986) 2169.Google Scholar
  14. [14]
    V. Sobolik and O. Wein, Int. J. Heat Mass Transf. 34 (1991) 1929.Google Scholar
  15. [15]
    A. McConaghy and T. J. Hanratty, AIChE J. 23 (1977) 493.CrossRefGoogle Scholar
  16. [16]
    A. Ambari, C. Deslouis and B. Tribollet, Chem. Eng. Commun. 29 (1984) 63.Google Scholar
  17. [17]
    D. F. James and A. J. Acosta, J. Fluid Mech. 42 (1970) 269.Google Scholar
  18. [18]
    M. J. Lighthill, Proc. Roy. Soc., Lond. A202 (1950) 359.Google Scholar
  19. [19]
    J. S. Ultman and M. M. Denn, Chem. Eng. J. 2 (1971) 81.Google Scholar
  20. [20]
    E. Zana, G. Tiefenbruch and L. G. Leal, Rheol. Acta 14 (1975) 891.CrossRefGoogle Scholar
  21. [21]
    R. P. Chhabra, P. H. Uhlherr and D. V. Boger, J. Non-Newton. Fluid Mech. 6 (1980) 187.CrossRefGoogle Scholar
  22. [22]
    P. Townsend, ibid. 6 (1980) 219.CrossRefGoogle Scholar
  23. [23]
    F. Sugeng and R. I. Tanner, ibid. 20 (1986) 281.CrossRefGoogle Scholar
  24. [24]
    D. Sigh and M. Coutanceau, ibid. 2 (1977) 1.Google Scholar
  25. [25]
    B. Mena, O. Manero and L. G. Leal, ibid. 26 (1987) 247.CrossRefGoogle Scholar
  26. [26]
    M. D. Chilcott and J. M. Rallison, ibid. 29 (1988) 381.CrossRefGoogle Scholar
  27. [27]
    S. A. Dhahir and K. Walters, J. Rheology 33 (1989) 781.Google Scholar
  28. [28]
    H. Jin, N. Phan-Thien N and R. I. Tanner, Comput. Mech. 8 (1991) 409.CrossRefGoogle Scholar
  29. [29]
    R. B. Bird, R. C. Armstrong and O. Hassager, ‘Dynamics of polymeric liquids’. Vol. 1. ‘Fluid Mechanics’, J. Wiley & Sons, New York (1977).Google Scholar
  30. [30]
    H. W. Bewersdorff, Rheol. Acta 23 (1984) 538.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. Sobolík
    • 1
  • S. Martemyanov
    • 2
  • G. Cognet
    • 3
  1. 1.Institute of Chemical Process FundamentalsAcademy of Sciences of Czech RepublicPrague 6Czech Republic
  2. 2.Institute of ElectrochemistryRussian Academy of SciencesMoscow V-71Russia
  3. 3.Institute of MechanicsGrenoble CedexFrance

Personalised recommendations