Advertisement

Applied Microbiology and Biotechnology

, Volume 25, Issue 6, pp 502–506 | Cite as

Production of 3-indoleacetic acid and 3-indolelactic acid in Azotobacter vinelandii cultures supplemented with tryptophan

  • Francisco García-Tabares
  • Tomas Herraiz-Tomico
  • Francisco Amat-Guerri
  • Jose Luis Garcia Bilbao
Biotechnology

Summary

3-Indoleacetic acid (IAA) and 3-indolelactic acid (ILA) have been identified as tryptophan (Trp) catabolites in Azotobacter vinelandii cultures. IAA production depends linearly on initial Trp concentration within the range 0–0.05% Trp, decreases in the presence of 10 mM 2-oxoglutarate and is always smaller than ILA production. Tryptophan aminotransferase activity, found in the cultures, could explain the first step of Trp transformation into IAA. In order to rationalize the formation of ILA, the presence of the enzyme indolelactate dehydrogenase in A. vinelandii is suggested.

Keywords

Enzyme Tryptophan Azotobacter Aminotransferase Activity Azotobacter Vinelandii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley JA (1962) Analysis of plant hormones. In: Glick D (ed) Methods of biochemical analysis, vol IX. Wiley, New York, p 88Google Scholar
  2. El-Essawy AA, El-Sayed MA, Mohamed YAH, El-Shanshoury A (1984) Effect of combined nitrogen in the production of plant-growth regulators by Azotobacter chroococcum. Zbl Mikrobiol 139: 327–333Google Scholar
  3. Gunasekaran M (1980) Synthesis of tryptophol and indolelactic acid by Cryptococcus neoformans. Mycologia 72: 578–585Google Scholar
  4. Hall JE, Dahm KH, Seed JR (1981) Quantification of tryptophan catabolites from Trypanosoma brucei gambiense in vitro. Comp Biochem Physiol 68 B: 521–526Google Scholar
  5. Jackson DL, McWha JA (1983) Rapid breakdown of indole-3-acetic acid on silicagel thin-layer plates. J Chromatogr 267: 242–245Google Scholar
  6. Jayachandran S, Govindswany CV (1979) Metabolism of aromatic aminoacids in Azotobacter chroococcum Beij. Indian J Microbiol 19: 175–177Google Scholar
  7. Jean M, De Moss RD (1968) Indolelactate dehydrogenase from Clostridium sporogenes. Can J Microbiol 14: 429–435Google Scholar
  8. Lee M, Breckenridge C, Knowles R (1970) Effect of some culture conditions on the production of indole-3-acetic acid and a gibberellin-like substance by Azotobacter vinelandii. Can J Microbiol 16: 1325–1330Google Scholar
  9. Lowry OH, Rosebrough A, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  10. O'Neil SR, De Moss RD (1968) Tryptophan transaminase from Clostridium sporogens. Archiv Biochem Biophysics 127: 361–369Google Scholar
  11. Parry RJ (1972) Biosynthesis of compounds containing an indole nucleus. In: Houlihan WJ (ed) Indoles. Wiley, New York, part 2, p 1Google Scholar
  12. Pilet PE, Chollet R (1970) Colorimetric determination of indole-3-acetic acid. C R Acad Sci Ser D271: 1675–1678Google Scholar
  13. Schneider EA, Wightman F (1974) Metabolism of auxin in higher plants. Ann Rev Plant Physiol 25: 487–513Google Scholar
  14. Tangen O, Fonnum F, Haavaldsen R (1965) Separation and purification of aromatic aminoacid transaminase from rat brain. BBA 96: 82–90Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Francisco García-Tabares
    • 1
  • Tomas Herraiz-Tomico
    • 1
  • Francisco Amat-Guerri
    • 2
  • Jose Luis Garcia Bilbao
    • 1
  1. 1.Instituto de Fermentaciones IndustrialesCSICMadridSpain
  2. 2.Instituto de Química OrgánicaMadridSpain

Personalised recommendations