Skip to main content
Log in

Automated determination of the right ventricular ejection fraction by digital processing of 81mKr scintigrams

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A method is presented for the automated determination of the right ventricular ejection fraction (RVEF) by digital image processing of scintigrams obtained by intravenous infusion of Krypton 81m (81mKr) dissolved in a glucose solution. End-diastolic and end-systolic sum pictures were computed by the addition of approximately 30–40 frames selected from the time-activity curve of a preliminary, manually drawn, right ventricular region of interest. After processing these two images with an adaptive Wiener filter, the right ventricular contour was determined by a recently developed algorithm using morphological and functional criteria. The RVEF was calculated for a series of 51 patients from the counts in the detected right ventricular regions in the end-diastolic and end-systolic sum images. In 16 patients without evidence of cardiopulmonary disease, the mean RVEF was 50±6.1%. RVEF was significantly reduced in 18 patients with obstructive pulmonary disease (42±6.5%) and in 17 patients with congestive cardiomyopathy (36±7.1%). The correlation coefficient between two determinations of the RVEF was r=0.94. Through digital image processing, the determination of the RVEF by radioimage processing, the determination of the RVEF by radioventriculography with 81mKr showed high reliability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berche C, Di Paola R (1974) Analyse fréquentielle et filtrage des images scintigraphiques. J Biol Méd Nucl 38:8–41

    Google Scholar 

  • Berger HJ, Matthay RA, Lohe J, Marshal RC, Gottschalk A, Zaret BL (1978) Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol 41:897–905

    Google Scholar 

  • Bourguignon MH, Douglass KH, Links IM, Wagner HN Jr. (1981) Fully automated data acquisition, processing, and display in equilibrium radioventriculography. Eur J Nucl Med 6:343–347

    Google Scholar 

  • Hannan WJ, Hare RJ, Hughes SHC, Scorgie RE, Muir AL (1977) Simplified method of determining left ventricular ejection fraction from a radionuclide bolus. Eur J Nucl Med 2:71–74

    Google Scholar 

  • Jaffee CC, Ellis KK (1974) Angiographic quantitation of ventricular volume, shape and mass. Curr Probl Radiol 4:1–55

    Google Scholar 

  • Johnson LL, Mc Carthy DM, Sciacca RR, Cannon PJ (1979) Right ventricular ejection fraction during exercise in patients with coronary artery disease. Circulation 60:1284–1291

    Google Scholar 

  • Knapp WH, Helus F, Elfner R, Gasper H, Vollhaber HN (1980a) Kr-81m for determination of right ventricular ejection fraction (RVEF). Eur J Nucl Med 5:487–492

    Google Scholar 

  • Knapp WH, Helus F, Tillmanns H, Elfner R (1980b) Untersuchung der Ventrikelfunktion mit kurzlebigen radioaktivem Krypton. Z Kardiol 69:180

    Google Scholar 

  • Lemort JP, Bizais Y, Delaminat P (1980) Use of finite-memory Wiener filters in scintigram processing. Eur J Nucl Med 5:447–452

    Google Scholar 

  • Maddahi J, Berman DS, Matsuoka DT, Waxman AD, Stankus KE, Forrester JS, Swan HJC (1979) A new technique for assessing right ventricular ejection fraction using rapid multiplegated equilibrium cardiac blood pool scintigraphy. Circulation 60:581–589

    Google Scholar 

  • Miller TR, Sampathkumaran KS (1982) Design and application of finite impulse response digital filters. Eur J Nucl Med 7:22–27

    Google Scholar 

  • Pistor P, Walch G, Meder HG, Hunt WA, Lorenz WJ, Ammann W, Georgi P, Luig H, Schmidlin P, Wiebelt H (1972a) Digitale Bildübertragung in der Nuklearmedizin, Teil 1. Kerntechnik 14:299–306

    Google Scholar 

  • Pistor P, Walch G, Meder HG, Hunt WA, Lorenz WJ, Ammann W, Georgi P, Luig H, Schmidlin P Wiebelt H (1972b) Digitale Bildübertragung in der Nuklearmedizin, Teil 2. Kerntechnik 14:353–359

    Google Scholar 

  • Sorensen SG, Hamilton GW, Williams DL, Ritchie JL (1979) Rwave synchronized blood pool imaging. Radiology 131:473–478

    Google Scholar 

  • Sorensen SG, Caldwell J, Ritchie J, Hamilton GW (1981) “Abnormal” response of ejection fraction to exercise in healthy subjects, caused by region-of-interest selection. J Nucl Med 22:1–7

    Google Scholar 

  • Standke R, Hör G, Maul FD (1983) Fully automated sectorial equilibrium radionuclide ventriculography. Eur J Nucl Med 8:77–83

    Google Scholar 

  • Tobinick E, Schelbert HR, Henning H, Lewinter M, Taylor A, Ashburn WL, Karliner JS (1978) Right ventricular ejection fraction in patients with acute anterior and inferior myocardial infarction assessed by radionuclide angiography. Circulation 57:1078–1084

    Google Scholar 

  • Wahl M (1977) Adaptive digitale Filter in der Szintigraphie. In: Nagel HH (ed) Digitale Bildverarbeitung. Springer, Berlin Heidelberg New York, pp 153–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elfner, R., Vaknine, R., Knapp, W.H. et al. Automated determination of the right ventricular ejection fraction by digital processing of 81mKr scintigrams. Eur J Nucl Med 12, 231–235 (1986). https://doi.org/10.1007/BF00251975

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251975

Key words

Navigation