Applied Microbiology and Biotechnology

, Volume 27, Issue 2, pp 152–158 | Cite as

Enantioselective reduction of acetyldimethylphenylsilane by Trigonopsis variabilis (DSM 70714)

  • Christoph Syldatk
  • Hannelore Andree
  • Andrea Stoffregen
  • Fritz Wagner
  • Burghard Stumpf
  • Ludger Ernst
  • Harald Zilch
  • Reinhold Tacke
Biotechnology

Summary

Growing and resting cells of the yeast Trigonopsis variabilis (DSM 70714) can be used for the enantioselective reduction of the organosilicon compound acetyldimethylphenylsilane (1) to give optically active (R)-(1-hydroxyethyl)dimethylphenylsilane [(R)-2] in good yields. The enantiomeric purity of the isolated product was determined to be 62–86% ee depending on the substrate concentration used. Both substrate and product caused an inhibition of the reaction at concentrations higher than 0.35 and 0.5 g/l, respectively. Besides, higher substrate and product concentrations led to increased formation of the by-product 1,1,3,3-tetramethyl-1,3-diphenyldisiloxane. Considering the limiting substrate and product concentrations, it was possible to use the same biomass at least 5 times without significant loss of enzyme activity. 3-Methyl-3-phenyl-2-butanone (5) and acetyldimethylphenylgermane (7), which represent carbon and germanium analogues of 1, were also found to be accepted as substrates by Trigonopsis variabilis (DSM 70714). The reduction rates of the silicon (1) and germanium compound (7) were much higher than the transformation rate of the corresponding carbon analogue 5.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage DA (1982) Organosilanes. In: G Wilkinson, FGA Stone, EW Abel (eds) Comprehensive organometallic chemistry, vol 2. Pergamon Press, Oxford/New York/Toronto/Sydney/Paris/Frankfurt, pp 1–203Google Scholar
  2. Brook AG (1968) Keto derivatives of group IV organometalloides. Adv Organomet Chem 7:95–155Google Scholar
  3. Chibata I, Tosa T, Fujimura M (1983) Immobilized living microbial cells. Ann Rep Ferm Proc 6:1–22Google Scholar
  4. Corriu RJP, Guérin C (1982) Nucleophilic displacement at silicon: Recent developments and mechanistic implications. Adv Organomet Chem 20:265–312Google Scholar
  5. Corriu RJP, Guérin C, Moreau JJE (1984) Stereochemistry at silicon. Topics Stereochem 15:43–198Google Scholar
  6. Dale JA, Dull DL, Mosher HS (1969) α-Methoxy-α-trifluoromethylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J Org Chem 34:2543–2549Google Scholar
  7. Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer reagents. Configurational correlations via nuclear magnetic resonance chemical shifts of distereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J Am Chem Soc 95:512–519Google Scholar
  8. Jones JB (1985) An illustrative example of a synthetically useful enzyme: Horse liver alcohol dehydrogenase. In: Ciba Foundation Symposium 111 (ed) Enzymes in organic synthesis. Pitman, London, pp 3–21Google Scholar
  9. Kasai M, Kawai K, Imuta M, Ziffer H (1984) Enantioselective ester hydrolyses employing Rhizopus nigricans. A method of preparing and assigning the absolute stereochemistry of cyclic alcohols. J Org Chem 49:675–679Google Scholar
  10. Klein J, Wagner F (1986) Different strategies to optimize the production phase of immobilized cells. In: Enzyme Engineering VIII (in press)Google Scholar
  11. Krebs KG, Heusser D, Wimmer H (1967) Sprühreagenzien. In: E Stahl (ed) Dünnschichtchromatographie. Springer, Berlin-Heidelberg-New York, pp 813–859Google Scholar
  12. Larson GL, Torres E (1985) Asymmetric induction by chiral silicon groups. J Organomet Chem 293:19–27Google Scholar
  13. Leuenberger HGW (1984) Methodology. In: H-J Rehm, G Reed (eds) Biotechnology, vol 6a. Biotransformations. Verlag Chemie, Weinheim, pp 5–29Google Scholar
  14. Leuenberger HGW, Kieslich K (1984) Biotransformationen. In: P Präve, U Faust, W Sittig, DA Sukatsch (eds) Handbuch der Biotechnologie. Verlag Oldenbourg, München/Wien, pp 454–482Google Scholar
  15. Matzinger PK, Leuenberger HGW (1985) Screening for microorganisms performing the stereoselective reduction of α-formyl-esters. Appl Microbiol Biotechnol 22:208–210Google Scholar
  16. Prelog V (1964) Specification of the stereospecifity of some oxido-reductases by diamond lattice sections. Pure Appl Chem 9:119–130Google Scholar
  17. Retey J, Robinson JA (1982) Stereospecificity in organic chemistry and enzymology. In: HF Ebel (ed) Monographs in modern chemistry, vol 13. Verlag Chemie, Weinheim/Deerfield Beach/BaselGoogle Scholar
  18. Sariaslani FS, Rosazza JPN (1984) Biocatalysis in natural product chemistry. Enzyme Microb Technol 6:242–253Google Scholar
  19. Schmidt-Kastner G, Egerer P (1984) Amino acids and peptides. In: HJ Rehm, G Reed (eds) Biotechnology vol 6a. Biotransformations. Verlag Chemie, Weinheim, pp 387–419Google Scholar
  20. Sheldrick WS, Linoh H, Tacke R, Lambrecht G, Moser U, Mutschler E (1985) Sila-pharmaca. Part 32. Crystal and molecular structures of the (R)-enantiomer and the racemate of the antimuscarinic agent (cyclohexyl)phenyl[2-(pyrrolidin-1-yl)ethyl]silanol (sila-procylidine). J Chem Soc Dalton Trans 1985:1743–1746Google Scholar
  21. Sih CJ, Chen C-S (1984) Microbial asymmetric catalysis. Enantioselective reductions of ketones. Angew Chem Int Ed Engl 23:570–578Google Scholar
  22. Sih CJ, Rosazza JP (1976) Microbial transformations in organic synthesis. In: B Jones, CH Sih, D Perlman (eds) Techniques of chemistry X: Applications of biochemical systems in organic chemistry. John Wiley and Sons, New York, pp 69–106Google Scholar
  23. Sih CJ, Zhou B-N, Gopalan AS, Shieh W-R, Chen C-S, Girdaukas G, Vanmiddlesworth F (1984) Enantioselective reductions of β-keto esters by Baker's yeast. In: AJ Laskin (ed) Enzyme Engineering 7, Ann New York Acad Sc 434, New York, pp 186–193Google Scholar
  24. Syldatk C, Andree H, Wagner F, Wuttke F, Zilch H, Tacke R (1986) Einsatz von Biokatalysatoren zur Herstellung optisch aktiver elementorganischer Verbindungen. 4. DECHEMA-Jahrestagung der Biotechnologen, Frankfurt/Main 1986, Abstracts, pp 171–172Google Scholar
  25. Tacke R, Linoh H, Stumpf B, Abraham W-R, Kieslich K, Ernst L (1983) Mikrobiologische Umwandlung von Silicium-Verbindungen: Enantioselektive Reduktion von Acetessigsäure(trimethylsilylalkyl)estern und deren Carba-Analoga. Z Naturforsch 38b:616–620Google Scholar
  26. Tacke R, Wuttke F, Zilch H, Andree H, Syldatk C, Wagner F, Ernst L, Schomburg D (1985) Enantioselective microbial reduction of racemic acetyl(t-butyl)methyl(phenyl)silane. Vth FECHEM Conference on Organometallic Chemistry, Riga 1985, Abstracts, p 188Google Scholar
  27. Tacke R, Zilch H (1986a) Drug design by sila-substitution and microbial transformations of organosilicon compounds: Some recent results. L'Actualité Chimique (3):75–82Google Scholar
  28. Tacke R, Zilch H (1986b) Sila-substitution — a useful strategy for drug design? Endeayour, New Series 10:191–197Google Scholar
  29. Tacke R, Zilch H, Stumpf B, Ernst L, Schomburg D (1984) Microbiological transformation of organosilicon compounds: Enantioselective reduction of (dimethylsilyl)-methyl acetoacetate and some cyclic and acyclic acyltriorganylsilanes. VIIth International Symposium on Organosilicon Chemistry, Kytoto 1984, Abstracts, p 201Google Scholar
  30. Whitesides GM, Wong C-H (1985) Enzymes in organic synthesis. Angew Chem Int Ed Engl 24:617–638Google Scholar
  31. Yonaha K, Soda K (1986) Applications of stereoselectivity of enzymes: Synthesis of optically active amino acids and α-hydroxy acids, and stereospecific isotope-labeling of aminoacids, amines and coenzymes. Adv Biochem Eng Biotechnol 33:95–130Google Scholar
  32. Zilch H, Tacke R (1986c) Fluorid-induzierte Fragmentierung von Acetyldimethylphenylsilan. J Organomet Chem 316:243–247Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Christoph Syldatk
    • 1
  • Hannelore Andree
    • 1
  • Andrea Stoffregen
    • 1
  • Fritz Wagner
    • 1
  • Burghard Stumpf
    • 2
  • Ludger Ernst
    • 2
  • Harald Zilch
    • 3
  • Reinhold Tacke
    • 3
  1. 1.Institute of Biochemistry and BiotechnologyTechnical University of BraunschweigBraunschweigFederal Republic of Germany
  2. 2.Gesellschaft für Biotechnologische Forschung mbH (GBF)BraunschweigFederal Republic of Germany
  3. 3.Institute of Inorganic and Analytical ChemistryTechnical University of BraunschweigBraunschweigFederal Republic of Germany

Personalised recommendations