Archive for Rational Mechanics and Analysis

, Volume 96, Issue 4, pp 339–357 | Cite as

On the Cahn-Hilliard equation

  • Charles M. Elliott
  • Zheng Songmu


Neural Network Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. A. Adams, Sobolev Spaces, Academic Press, New York (1975).Google Scholar
  2. J. W. Cahn & J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258–267.Google Scholar
  3. J. Carr, M. E. Gurtin & M. Slemrod, Structural phase transitions on a finite interval, Arch. Rational Mech. Anal. 12 (1984), 317–351.Google Scholar
  4. D. S. Cohen & J. D. Murray, A generalized diffusion model for growth and dispersal in a population, J. Math. Biology 12 (1981), 237–249.Google Scholar
  5. J. Douglas, Jr., T. Dupont & L. Wahlbin, Optimal L error estimates for Galerkin approximations to solutions of two point boundary value problems, Math. Comp. 29 (1975), 475–483.Google Scholar
  6. M. Hazewinkel, J. F. Kaashoek & B. Leynse, Pattern formation for a one dimensional evolution equation based on Thom's river basin model, Report # 8519/B, Econometric Institute, Erasmus University (1985).Google Scholar
  7. S. Klainerman & G. Ponce, Global small amplitude solutions to nonlinear evolution equations, Comm. Pure. Appl. Math. 36 (1983), 133–141.Google Scholar
  8. J. L. Lions & E. Magenes, Non-homogeneous boundary value problems and applications, Vol. II, Springer-Verlag (1972).Google Scholar
  9. A. Novick-Cohen, Energy methods for the Cahn-Hilliard equation, IMA Preprint # 157, (1985).Google Scholar
  10. A. Novick-Cohen & L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica 10 (D) (1984), 277–298.Google Scholar
  11. G. I. Sivashinsky, On cellular instability in the solidification of a dilute binary alloy, Physica 8 (D) (1983), 243–248.Google Scholar
  12. V. Thomée, Some convergence results for Galerkin methods for parabolic boundary value problems, in Mathematical Aspects of Finite Element Methods in Partial Differential Equations, ed. C. de Boor, Academic Press (1974), p. 55–84.Google Scholar
  13. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, L. N. M. # 1054, Springer-Verlag, Berlin (1984).Google Scholar
  14. L. Wahlbin, On maximum norm error estimates for Galerkin approximations to one dimensional second order parabolic boundary value problems, SIAM J. Numer. Anal. 12 (1975), 177–187.Google Scholar
  15. M. F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Charles M. Elliott
    • 1
  • Zheng Songmu
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest Lafayette

Personalised recommendations