Skip to main content
Log in

Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Avellaneda, M., “Optimal bounds and microgeometries for elastic two-phase composites,” SIAM J. Appl. Math. 47, 1987, pp. 1216–1228.

    Google Scholar 

  2. Backus, G. E., “Long-wave elastic anisotropy produced by horizontal layering,” J. Geophys. Res. 67, 1962, pp. 4427–4440.

    Google Scholar 

  3. Bensoussan, A., Lions, J.-L., & Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland, 1978.

  4. Bruggeman, D. A. G., “Berechnung verschiedener physikalischer Konstanten, von Heterogenen Substantzen,” Ann. Phys. 5, 1935, pp. 636–664.

    Google Scholar 

  5. Christensen, R. M., Mechanics of Composite Materials, Wiley Interscience, 1979.

  6. Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley and Sons, 1983.

  7. Duvaut, G., “Analyse fonctionelle et mécanique des milieux continus,” in Theoretical and Applied Mechanics, W. Koiter, ed., North Holland, 1976, pp. 119–132.

  8. Francfort, G. A., & Milton, G. W., “Optimal bounds for conduction in two-dimensional, multiphase, polycrystalline media,” J. Stat. Phys. 46, 1987, pp. 161–177.

    Google Scholar 

  9. Francfort, G. A., & Murat, F., “Homogenization and optimal bounds in linear elasticity,” Arch. Rational Mech. Anal. 94, 1986, pp. 307–334.

    Google Scholar 

  10. Francfort, G., & Murat, F., “Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media,” in Non-Classical Continuum Mechanics, R. Knops and A. A. Lacey, eds., Cambridge University Press, 1987, pp. 197–212.

  11. Gibiansky, L. V., & Cherkaev, A. V., “Design of composite plates of extremal rigidity,” Preprint no. 914, Ioffe Physicotechnical Institute, Leningrad, 1986.

    Google Scholar 

  12. Golden, K., & Papanicolaou, G., “Bounds for effective parameters of heterogeneous media by analytic continuation,” Comm. Math. Phys., 1983, pp. 473–491.

  13. Hashin, Z., “Bounds for viscosity coefficients of fluid mixtures by variational methods,” in Proc. Int. Symp. Second Order Effects in Plasticity and Fluid Dynamics, Reiner & Abir, eds., Pergamon Press, 1964, pp. 431–434.

  14. Hashin, Z., “Viscosity of rigid particle suspensions,” in Contributions to Mechanics, D. Abir ed., Pergamon Press, 1969, pp. 347–359.

  15. Hashin, Z., “Analysis of composite materials: a survey,” J. Appl. Mech. 50, 1983, pp. 481–505.

    Google Scholar 

  16. Hashin, Z., & Shtrikman, S., “A variational approach to the theory of the elastic behavior of multiphase materials,” J. Mech. Phys. Solids 11, 1963, pp. 127–140.

    Google Scholar 

  17. Hill, R., “New derivations of some elastic extremum principles,” in Progress in Applied Mechanics — Prager Anniversary Volume, MacMillan, 1963, pp. 99–106.

  18. Kantor, Y., & Bergman, D., “Improved rigorous bounds on the effective elastic moduli of a composite material,” J. Mech. Phys. Solids 32, 1984, pp. 41–62.

    Google Scholar 

  19. Keller, J. B., Rubenfeld, L. A., & Molyneux, J. E., “Extremum principles for slow viscous flows with applications to suspensions,” J. Fluid Mech. 30, 1967, pp. 97–125.

    Google Scholar 

  20. Kohn, R. V., & Dal Maso, G., “The local character of G-closure,” in preparation.

  21. Kohn, R. V., & Lipton, R., “The effective viscosity of a mixture of two Stokes fluids,” in Advances in Multiphase Flow and Related Problems, G. Papanicolaou, ed., SIAM, 1986.

  22. Kohn, R. V., & Milton, G. W., “On bounding the effective conductivity of anisotropic composites,” in Homogenization and Effective Moduli of Materials and Media, J. Ericksen et al. eds, Springer-Verlag, 1986, pp. 97–125.

  23. Kohn, R. V., & Strang, G., “Optimal design and relaxation of variational problems, Comm. Pure Appl. Math. 39, 1986, pp. 113–137, 139–182, and 353–377.

    Google Scholar 

  24. Lipton, R., “An Optimal Lower Bound on the Energy Dissipation Rate for Homogenized Stokes Flow,” Ph. D. Thesis, NYU, 1986.

  25. Lipton, R., “On the effective elasticity of a two dimensional homogenized incompressible elastic composite”, to appear in Proc. Roy. Soc. Edinburgh.

  26. Lurie, K. A., & Cherkaev, A. V., “G-closure of a set of anisotropically conducting media in the two-dimensional case,” J. Opt. Th. Appl. 42, 1984, pp. 283–304 and errata, ibid. 53, 1987, p. 319.

    Google Scholar 

  27. Lurie, K. A., & Cherkaev, A. V., “G-closure of some particular sets of admissible material characteristics for the problem of bending of thin plates,” J. Opt. Th. Appl. 42, 1984, pp. 305–316.

    Google Scholar 

  28. Lurie, K. A., & Cherkaev, A. V., “Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion”, Proc. Royal Soc. Edinburgh 99 A, 1984, pp. 71–87.

    Google Scholar 

  29. Lurie, K. A., & Cherkaev, A. V., “Exact estimates of the conductivity of a binary mixture of isotropic materials,” Proc. Roy. Soc. Edinburgh 104 A, 1986, pp. 21–38.

    Google Scholar 

  30. Lurie, K. A., Cherkaev, A. V., & Fedorov, A. V., “Regularization of optimal design problems for bars and plates,” J. Opt. Th. Appl. 37, 1982, pp. 499–522 and 523–543.

    Google Scholar 

  31. Lurie, K. A., Cherkaev, A. V., & Fedorov, A. V., “On the existence of solutions to some problems of optimal design for bars and plates,” J. Opt. Th. Appl. 42, 1984, pp. 247–281.

    Google Scholar 

  32. McConnell, W. H., “On the approximation of elliptic operators with discontinuous coefficients,” Ann. Sc. Norm. Sup. Pisa 3, 1976, pp. 121–137.

    Google Scholar 

  33. Mascarenhas, M. L., “Fonctions faiblement continues et semi-continues inférieurement issues de lois de comportement nonlinéaires pour des fluides incompressibles,” C. R. Acad. Sc. Paris 291, 1980, Ser. A., pp. 79–81.

    Google Scholar 

  34. Milton, G. W., & McPhedran, R. C., “A comparison of two methods for deriving bounds on the effective conductivity of composites,” in Macroscopic Properties of Disordered Media, R. Burridge and other eds. Lecture Notes in Physics No. 154, Springer-Verlag, 1982, pp. 183–193.

  35. Milton, G., “The coherent potential approximation is a realizable effective medium theory,” Comm. Math. Phys. 99, 1985, pp. 465–500.

    Google Scholar 

  36. Milton, G. W., “Modelling the properties of composites by laminates,” in Homogenization and Effective Moduli of Materials and Media, J. Ericksen and other eds, Springer-Verlag, 1986.

  37. Mirsky, L., “On the trace of matrix products,” Math. Nach. 20, 1959, pp. 171–174.

    Google Scholar 

  38. Murat, F., & Tartar, L., “Calcul des variations et homogénéisation,” in Les Methodes de l'Homogénéisation: Théorie et Applications en Physique, Coll. de la Dir. des Etudes et Recherches de Electr. de France, Eyrolles, Paris, 1985, pp. 319–370.

    Google Scholar 

  39. Nguetseng, G., “Etude asymptotique du comportement macroscopique d'un mélange de deux fluides visqueux,” J. de Méch. Théor. et Appl. 1. No, 6, 1982, pp. 957–961.

    Google Scholar 

  40. Norris, A. N., “A differential scheme for the effective moduli of composites,” Mech. of Materials 4, 1985, pp. 1–16.

    Google Scholar 

  41. Papanicolaou, G., & Varadhan, S., “Boundary value problems with rapidly oscillating random coefficients” in Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields, North-Holland, 1982, p. 835.

  42. Paul, B., “Prediction of elastic constants of multiphase materials,” Trans. A.S.M.E. 218, 1960, pp. 36–41.

    Google Scholar 

  43. Sanchez-Palencia, E., Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics No. 127, Springer-Verlag, 1980.

  44. Schulgasser, K., “Relationships between single-crystal and polycrystal electrical conductivity”, J. Appl. Phys. 47, 1976, pp. 1880–1886.

    Google Scholar 

  45. Simon, L., “On G-convergence of elliptic operators,” Indiana Univ. Math. J. 28, 1979, pp. 587–594.

    Google Scholar 

  46. Spagnolo, S., “Convergence in energy for elliptic operators,” in Numerical Solutions of Partial Differential Equations III — Synspade 1975, B. Hubbard, ed., Academic Press, 1976.

  47. Suquet, P., “Une méthode duale en homogénéisation: application aux milieux élastiques,” J. Mech. Theor. Appl. 1982, special issue, pp. 79–98.

  48. Tartar, L., “Problème de controle des coefficients dans des équations aux dérivées partielles,” in Control Theory, Numerical Methods, and Computer Systems Modelling, A. Bensoussan and J.-L. Lions eds., Lecture Notes in Economics and Mathematical Systems No. 107, Springer-Verlag, 1975, pp. 420–426.

  49. Tartar, L., “Estimation de coefficients homogénéisés,” in Computing Methods in Applied Sciences and Engineering, R. Glowinski & J. L. Lions, eds, Lecture Notes, in Math. No. 704, Springer-Verlag, 1978, pp. 364–373.

  50. Tartar, L., “Estimations fines des coefficients homogénéisés,” in Ennio de Giorgi Colloquium, P. Krée, ed., Pitman Research Notes in Math. No. 125, 1985, pp. 168–187.

  51. Tartar, L., “Remarks on homogenization,” in Homogenization and Effective Moduli of Materials and Media, J. Ericksen and other eds., Springer-Verlag, 1986, pp. 228–246.

  52. Willis, J. R., “Bounds and self-consistent estimates for the overall moduli of anisotropic composites,” J. Mech. Phys. Solids 25, 1977, pp. 185–202.

    Google Scholar 

  53. Willis, J. R., “The overall elastic response of composite materials,” J. Appl. Mech. 50, 1983, pp. 1202–1209.

    Google Scholar 

  54. Zhikov, V. V., Kozlov, S. M., Oleinik, O. A., & Ngoan, K. T., “Averaging and G-convergence of differential operators,” Russian Math. Surveys 34, 1979, pp. 69–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. L. Strang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, R.V., Lipton, R. Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch. Rational Mech. Anal. 102, 331–350 (1988). https://doi.org/10.1007/BF00251534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251534

Keywords

Navigation