Skip to main content
Log in

A connection formula for the second Painlevé transcendent

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the second Painlevé transcendent

$$\frac{{d^2 y}}{{dx^2 }} = xy + 2y^3 .$$

It is known that if y(x)k Ai (x) as x → + ∞, where −1<k<1 and Ai (x) denotes Airy's function, then

$$y(x) \sim d|x|^{ - \tfrac{1}{4}} sin\{ \tfrac{2}{3}|x|^{\tfrac{3}{2}} - \tfrac{3}{4}d^2 1n|x| - c\} ,$$

where the constants d, c depend on k. This paper shows that

$$d^2 = \pi ^{ - 1} 1n(1 - k^2 )$$

, which confirms a conjecture by Ablowitz & Segur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Ince, “Ordinary differential equations”, Dover, New York, (1956).

    Google Scholar 

  2. E. Hille, “Ordinary differential equations in the complex domain”, Wiley, New York, (1976).

    Google Scholar 

  3. S. P. Hastings & J. B. McLeod, “A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation”, Arch. Rational Mech. Anal. 73, (1980), 31–51.

    Article  MathSciNet  Google Scholar 

  4. M. J. Ablowitz, & H. SegurAsymptotic solutions of the Korteweg-de Vries equation”, Stud. Appl. Math. 57, (1977), 13–44.

    ADS  MathSciNet  Google Scholar 

  5. M. J. Ablowitz & H. Segur, “Exact linearization of a Painlevé transcendent”, Phys. Rev. Lett. 38, (1977), 1103–1106.

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Segur & M. J. Ablowitz, “Asymptotic solutions of nonlinear evoluton equations and a Painlevé transcendent”, Physica, 3 D, (1981), 165–184.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkson, P.A., McLeod, J.B. A connection formula for the second Painlevé transcendent. Arch. Rational Mech. Anal. 103, 97–138 (1988). https://doi.org/10.1007/BF00251504

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251504

Keywords

Navigation