Skip to main content
Log in

On the limit of the nonlinear Enskog equation corresponding with fluid dynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that if a scale of the diameter of particles is not greater than a scale of the mean free path to a high enough power, if the scale of the mean free path is sufficiently small, and if the non-hydrodynamic part of the initial data satisfies an assumption of smallness, then a solution of the initial-value problem exists for the Enskog equation on a macroscopic time interval as long as a smooth solution of the Euler equations for compressible fluids exists. This Enskog solution is approximated both by the corresponding solution of the Boltzmann equation and by the solution of the Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arkeryd, On the Enskog equation in two space variables, Transp. Theory Stat. Phys. 15 (5), 673–691 (1986).

    Google Scholar 

  2. H. van Beijeren & M. H. Ernst, The modified Enskog equation, Physica (Utrecht) 68 (1973), 437–456.

    Google Scholar 

  3. N. Bellomo & M. Lachowicz, Kinetic equations for dense gases. A review of physical and mathematical results, Rapporto interno n. 6, Dipartimento di Matematica, Politecnico di Torino, Marzo 1987.

    Google Scholar 

  4. N. Bellomo & G. Toscani, Lecture Notes on the Cauchy Problem for the Nonlinear Boltzmann Equation, Rapporto interno n. 16 Dipartimento di Matematica, Politecnico di Torino, Settembre 1986.

  5. R. Caflish & G. Papanicolaou, The fluid dynamical limit of a nonlinear model Boltzmann equation, Comm. Pure Appl. Math. 32 (1979), 589–616.

    Google Scholar 

  6. R. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. Pure Appl. Math. 33 (1980), 651–666.

    Google Scholar 

  7. R. Caflisch, Fluid dynamics and the Boltzmann equation, in Nonequilibrium Phenomena 1: The Boltzmann Equation, eds. L. J. Lebowitz & E. W. Montroll, North-Holland 1983.

  8. C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburgh (1975).

    Google Scholar 

  9. C. Cercignani, Existence of global solutions for the space inhomogeneous Enskog equation, Transp. Theory Stat. Phys. 16, 213–331 (1987).

    Google Scholar 

  10. D. Enskog, K. Svenska Vetenskapsakademiens, Handl. 63, no. 4 (1921); English translation in S. Brush, Kinetic Theory, vol. 3, Pergamon Press (London, New York, 1972).

  11. J. H. Ferziger & H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Amsterdam, North-Holland, 1972.

    Google Scholar 

  12. W. Fiszdon, M. Lachowicz, & A. Palczewski, Existence problems of the nonlinear Boltzmann equation, in Trends and Applications of Pure Mathematics to Mechanics, eds. P. G. Ciarlet & M. Roseau, 63–95, Springer-Verlag, 1984.

  13. H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. Appl. of Nonlinear PDE in Math. Phys., Providence, 1965.

  14. W. Greenberg, J. Polewczak, & P. Zweifel, Global existence proofs of the Boltzmann equation, in Nonequilibrium Phenomena: The Boltzmann Equation, eds. L. J. Lebowitz & E. W. Montroll, North-Holland 1983.

  15. M. Lachowicz, On the local existence and uniqueness of solution of initial-value problem for the Enskog Equation, Bull. of Pol. Ac. of Sc.-Math. 31, no. 1–2, 1983.

  16. M. Lachowicz, On the initial layer and the existence theorem for the nonlinear Boltzmann equation, Math. Meth. in Applied Sc. 9, no. 3 (1987), in press.

  17. M. Lachowicz, Differentiability of the solution of some linear system of equations, Arch. Mech. 38 (1–2), 127–141 (1986).

    Google Scholar 

  18. M. Lachowicz, Initial layer and existence of a solution of the nonlinear Boltzmann equation, Proc. XV Internat. Symp. on Rarefied Gas Dynamics, Grado 1986, Teubner.

  19. N. Bellomo & M. Lachowicz, Asymptotic equivalence between the Enskog and Boltzmann equations for the Knudsen numbers of the order of unity, Rapporto interno n. 12, Dipartimento di Matematica, Politecnico di Torino, Maggio 1987.

    Google Scholar 

  20. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, 1984.

  21. P. Résibois & M. De Leener, Classical Kinetic Theory of Fluids, J. Wiley and Sons, New York 1977.

    Google Scholar 

  22. C. Truesdell & R. G. Muncaster, Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, Academic Press 1980.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Arkeryd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachowicz, M. On the limit of the nonlinear Enskog equation corresponding with fluid dynamics. Arch. Rational Mech. Anal. 101, 179–194 (1988). https://doi.org/10.1007/BF00251460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251460

Keywords

Navigation