Skip to main content

Advertisement

Log in

Uptake of 11C-l-and d-methionine in brain tumors

  • Short Communication
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

11C-labeled l-and d-methionine uptake was measured in seven patients with brain tumors using positron emission tomography. Tumors accumulated both isomers of the tracer. The strongest uptake occurred in tumors with a high grade of malignancy, while low grade tumors accumulated less activity. The l to d uptake ratio in tumor regions ranged from 0.92–1.25. Conventional 99mTc-DTPA scans revealed blood-brain barrier damage in two patients with no or only slight 11C-methionine accumulation, while one patient with a negative 99mTc-DTPA scan accumulated 11C-methionine in the tumor region. In view of the biochemical pathway of methionine and the present findings, it is concluded that the uptake reflects metabolic activity in brain tissue rather than uptake by diffusion due to disruption of the blood-brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bakay L (1968) Changes in barrier effect in pathological states. In: Lajtha A, Ford DH (eds) Brain barrier systems. Elsevier, Amsterdam, pp 315–341

    Google Scholar 

  2. Bergström M, Collins PV, Ehrin E, Ericson K, Eriksson L, Greitz T, Holst H, Langström B, Lijia A, Lundqvist H, Nagren K (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using 68Ga-EDTA, 11C-glucose, and 11C-methionine. J Comput Assist Tomogr 7:1062–1066

    Google Scholar 

  3. Bustany P, Henry JF, Sargent T, Zarifian T, Cabanis E, Collard P, Comar D (1983) Local brain protein metabolism in dementia and schizophrenia: In vivo studies with 11C-l-methionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer-Verlag, Berlin

    Google Scholar 

  4. Crone C (1963) The permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58:292–305

    Google Scholar 

  5. Di Chiro G, De la Paz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured 18F-fluorodesoxyglucose and positron emission tomography. Neurology 32:1323–1329

    Google Scholar 

  6. Di Chiro G, Brooks RA, Patronas NJ, Bairamian D, Kornblith PL, Smith BH, Mansi L, Barker J (1984) Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 15, Suppl:S138-S146

    Google Scholar 

  7. Gadisseux P, Ward JD, Young HF, Becker DP (1984) Nutrition and the neurosurgical patient. J Neurosurg 60:219–232

    Google Scholar 

  8. Heiss WD, Phelps ME (1983) Positron emission tomography of the brain. Springer-Verlag, Berlin

    Google Scholar 

  9. Holman, BL, Hill TC, Lee RGL, Zimmerman RE, Moore SC, Royal HD (1983) Brain imaging with radiolabeled amines. In: Freeman LM, Weissmann HS (eds) Nuclear medicine annual. Raven Press, New York

    Google Scholar 

  10. Hübner KF, Krauss S, Washburn LC, Gibbs WD, Holloway EC (1981) Tumor detection with 1-aminocyclopentane- and 1-aminocyclobutane-11C-carboxylic acid using positron emission computed tomography. Clin Nucl Med 6:249–252

    Google Scholar 

  11. Hübner KF, Purvis JT, Mahaley SM, Robertson JT, Rogers S, Gibbs S, Gibbs WD, King P, Partain CL (1982) Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. J Comput Asisst Tomogr 6:544–550

    Google Scholar 

  12. Jones T (ed) (1984) Proceedings of the first EEC sponsored workshop on PET methodology. MRC-Cyclotron Unit, Hammersmith Hospital, London

    Google Scholar 

  13. Knapp WH, Helus F, Sinn H, Ostertag H, Georgi P, Brandeis WE, Braun A (1984) N-13-l-glutamate uptake in malignancy: Its relationship to blood flow J Nucl Med 25:989–997

    CAS  PubMed  Google Scholar 

  14. Kubota K, Yamada K, Fukada H, Endo S, Ito M, Abe Y, Yamaguchi T, Fujiwara T, Sato T, Ito K, Yoshikawa S, Hatazawa J, Matsuzawa T, Iwata R, Ido T (1984) Tumor detection with carbon-11-labelled amino acids. Eur J Nucl Med 9:136–140

    Google Scholar 

  15. Lajtha A, Toth J (1963) The brain barrier system V: Stereospecificity of amino acid uptake, exchange and efflux. J Neurochem 10:909–920

    Google Scholar 

  16. Lammertsma AA, Wise RSJ, Heather JD (1983) Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 2. Results in normal subjects and brain tumor and stroke patients. J Cerebr Blood Flow Metabol 3:425–431

    Google Scholar 

  17. Lammertsma AA, Wise RSJ, Jones T, Rhodes CG (1983) In vivo measurements of regional cerebral blood flow and blood volume in patients with brain tumors using positron emission tomography. Acta Neurochir (Wien) 69:5–13

    Google Scholar 

  18. Lee RGL, Hill TC, Holman BL, Uren MD, Clouse ME (1982) Comparison of N-isopropyl-[123I]-p-iodoamphetamine brain scans using Anger camera scintigraphy and single photon emission tomography. Radiology 145:789–793

    Google Scholar 

  19. Meyer G-J, Osterholz A, Hundeshagen H (1982) Routine production and quality control of 11C-l-methionine. J Label Comp Radiopharm 19:1286–1287

    Google Scholar 

  20. Meyer G-J, Osterholz A, Hundeshagen H (1983) Routine quality control of 11C-labeled radiopharmaceuticals by HPLC. J Radioanal Chem 80:229–235

    Google Scholar 

  21. Neame KD (1968) A comparison of the transport systems for amino acids in brain, intestine, kidney, and tumor. In: Lajtha A, Ford DH (eds) Brain barrier systems, Elsevier, Amsterdam, pp 185–196

    Google Scholar 

  22. Oldendorf W (1981) Clearance of radiolabeled substances by brain after arterial injection using a diffusible internal standard. In: Marks N, Rodnight R (eds) Research methods in neurochemistry. Plenum, New York, pp 91–112

    Google Scholar 

  23. Phelps ME, Barrio JR, Huang SC, Keen RE, Keen RE, Chugani A, Mazziotta JC (1984) Criteria for the tracer kinetic measurement of cerebral protein synthesis in man with positron computed tomography. Ann Neurol 15, Suppl:S192-S202

    Google Scholar 

  24. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscle. Am J Physiol 197:1205–1210

    Google Scholar 

  25. Roberts S (1968) Influence of elevated circulating levels of amino acids on cerebral concentration and utilization of amino acids. In: Lajtha A, Ford DH (eds) Brain barrier systems. Elsevier. Amsterdam, pp 235–243

    Google Scholar 

  26. Shibasaki T, Uki J, Kanoh T, Kawafuchi J-I (1979) Composition of free amino acids in brain tumors. Acta Neurol, Scand 60:301–311

    Google Scholar 

  27. Steinwall O (1968) Transport inhibition phenomena in unilateral chemical injury of blood brain barrier. In: Lajtha A, Ford DH (eds) Brain barrier systems. Elsevier, Amsterdam, pp 357–366

    Google Scholar 

  28. Walker MD (ed) (1984) Research issues in positron emission tomography. Ann Neurol 15: Suppl

  29. Warburg O (1926) Stoffwechsel der Tumoren. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, GJ., Schober, O. & Hundeshagen, H. Uptake of 11C-l-and d-methionine in brain tumors. Eur J Nucl Med 10, 373–376 (1985). https://doi.org/10.1007/BF00251316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251316

Key words

Navigation