Advertisement

Archive for Rational Mechanics and Analysis

, Volume 47, Issue 2, pp 117–148 | Cite as

One-dimensional shock waves in heat conducting materials with memory

1. Thermodynamics
  • J. Dunwoody
Article

Keywords

Neural Network Shock Wave Complex System Heat Conducting Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, B. D., & M. E. Gurtin, Arch. Rational Mech. Anal. 19, 266–298 (1965).Google Scholar
  2. 2.
    Rankine, W. J. M., Phil. Trans. Roy. Soc. 160, 277–288 (1870).Google Scholar
  3. 3.
    Hayes, W. D., Gasdynamic Discontinuities. Princeton: Princeton University Press 1960.Google Scholar
  4. 4.
    Achenbach, J. D., S. M. Vogel & G. Hermann, Irreversible Aspects of Continuum Mechanics — H. Parkus, L. I. Sedov. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  5. 5.
    Coleman, B. D., & W. Noll, Arch. Rational Mech. Anal. 13, 167–178 (1963).zbMATHGoogle Scholar
  6. 6.
    Coleman, B. D., & M. E. Gurtin, Proc. Roy. Soc., A 292, 562–574 (1966).Google Scholar
  7. 7.
    Coleman, B. D., Arch. Rational Mech. Anal. 17, 1–46 (1964).Google Scholar
  8. 8.
    Truesdell, C., & R. A. Toupin, The Classical Field Theories, Encyclopedia of Physics, III/1. S. Flügge. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  9. 9.
    Coleman, B. D., Arch. Rational Mech. Anal. 17, 230–254 (1964).Google Scholar
  10. 10.
    Coleman, B. D., & V. J. Mizel, Arch. Rational Mech. Anal. 27, 255–274 (1968).Google Scholar
  11. 11.
    Coleman, B. D., M. E. Gurtin & I. Herrera R, Arch. Rational Mech. Anal. 19, 1–19 (1965).Google Scholar
  12. 12.
    Chen, P. J., & M. E. Gurtin, Arch. Rational Mech. Anal. 36, 33–46 (1970).Google Scholar
  13. 13.
    Courant, R., & K. O. Friedrichs, Supersonic Flow and Shock Waves. New York: Interscience 1948.Google Scholar
  14. 14.
    Serrin, J., Mathematical Principles of Classical Fluid Mechanics. Encyclopedia of Physics. VIII/1, S. Flügge. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  15. 15.
    Kantorovich, L. V., & G. P. Akilov, Functional Analysis in Normed Spaces. Pergamon 1964.Google Scholar
  16. 16.
    Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Encyclopedia of Physics, III/3, S. Flügge. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  17. 17.
    Truesdell, C., Arch. Rational Mech. Anal. 8, 263–296 (1961).Google Scholar
  18. 18.
    Duhem, P., C. R. Acad. Sci. Paris 136, 343–345 (1903).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • J. Dunwoody
    • 1
  1. 1.Department of Engineering MathematicsThe Queen's UniversityBelfast

Personalised recommendations