Advertisement

Theoretical and Applied Genetics

, Volume 66, Issue 3–4, pp 349–355 | Cite as

Genetic control of anthocyanin-O-methyltransferase activity in flowers of Petunia hybrida

  • L. M. V. Jonsson
  • P. de Vlaming
  • H. Wiering
  • M. E. G. Aarsman
  • A. W. Schram
Article

Summary

The relation between four methylation genes (Mt1, Mt2, Mf1 and Mf2) in flowers of Petunia hybrida and anthocyanin-methyltransferase activity was investigated in vitro. All genes controlled methyltransferase activity. This activity was measured with cyanidinnd petunidin-derivatives as substrates. A cross provided evidence that the Mf-genes regulate methyltransferases which are distinct from those controlled by the Mtgenes. Different effects of the two Mf-genes in vivo are shown. The results suggest that the four methylationgenes control four different methyltransferases.

Key words

Petunia hybrida Anthocyanin biosynthesis Hydroxylases Methyltransferases 

Abbreviations

KPi

potassium phosphate

OMT

O-methyltransferase

SAM

S-adenosyl-L-methionine

3RGac5G

3(p-coumaroyl)-rutinoside-5-glucoside

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254Google Scholar
  2. Cornu A, Maizonnier D, Wiering H, de Vlaming P (1980) Petunia genetics.3. The linkage group of chromosome V. Ann Amél Plant 30:443–454Google Scholar
  3. Doodeman M, Tabak AJH, Schram AW, Bennink GJH (1982) Hydroxylation of cinnamic acids and flavonoids during biosynthesis of anthocyanins in Petunia hybrida. Hort Planta 154:546–549Google Scholar
  4. Jonsson LMV, Aarsman MEG, Schram AW, Bennink GJH (1982) Methylation of anthocyanins by cell-free extracts of flower buds of Petunia hybrida. Phytochemistry 21: 2457–2459Google Scholar
  5. Larson RL, Coe EH Jr (1977) Gene-dependent flavonoid glucosyl-transferase in maize. Biochem Genet 15:153–156Google Scholar
  6. de Luca V, Ibrahim RK (1982) Characterization of three distinct flavonol O-methyltransferases from Chrysosplenium americanum. Phytochemistry 21:1537–1540Google Scholar
  7. Maizonnier D, Moessner A (1979) Localization of linkage groups on the seven chromosomes of the Petunia hybrida genome. Genetica 51:143–148Google Scholar
  8. Poulton JE (1981) Transmethylation and demethylation reactions in the metabolism of secondary plant products. In: Conn EE (ed) The biochemistry of plants, vol 7. Secondary plant products. Academic Press, London New York, pp 667–723Google Scholar
  9. Tabak AJH, Meyer H, Bennink GJH (1978) Modification of the B-ring during flavonoid synthesis in Petunia hybrida: introduction of the 3′-hydroxylgroup regulated by the gene Ht1. Planta 139:67–71Google Scholar
  10. Tabak AJH, Schram AW, Bennink GJH (1981) Modification of the B-ring during flavonoid synthesis in Petunia hybrida: effect of the hydroxylation gene Hfl on dihydroflavonol intermediates. Planta 153:462–465Google Scholar
  11. Wiering H (1974) Genetics of flower colour in Petunia hybrida Hort. Genen Phaenen 17:117–134Google Scholar
  12. Wiering H, de Vlaming P (1973) Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. 1.The gene Gf. Genen Phaenen 16:35–50Google Scholar
  13. Wiering H, de Vlaming P (1977) Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. 2. The genes Mf1 and Mf2. Z Pflanzenzücht 78:113–123Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • L. M. V. Jonsson
    • 1
  • P. de Vlaming
    • 2
  • H. Wiering
    • 3
  • M. E. G. Aarsman
    • 1
  • A. W. Schram
    • 2
  1. 1.Department of Plant PhysiologyUniversity of AmsterdamKruislaan
  2. 2.Department of GeneticsUniversity of AmsterdamKruislaan
  3. 3.Hortus BotanicusUniversity of AmsterdamDD AmsterdamThe Netherlands

Personalised recommendations