Skip to main content
Log in

Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction.

A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859–861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults.

The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atwater T (1970) Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol Soc. Am Bull 81: 3513–3536

    Google Scholar 

  • Aubouin J, von Huene R, Azema J, Coulbourn WT, Cowan DS, Curiale JA, Dengo CA, Faas, RW, Harrison W, Hesse R, Ladd JW Muzylov N, Shiki T, Thompson PR, Westberg J (1982) Middle America Trench. Init Rep DSDP 67: 1–793

    Google Scholar 

  • Aubouin J, Bourgois J, Azéma J (1984) A new type of active margin: the convergent-extensional margin, as exemplified by the Middle America Trench off Guatemala. Earth Planet Sci Lett 67: 211–218

    Google Scholar 

  • Bailey EH, Irwin WP, Jones DL (1964) Franciscan and related rocks, and their significance in the geology of western California. Calif Div Mines Bull 183: 1–177

    Google Scholar 

  • Bangs N, Cande SC, Lewis SD, Miller J (1992) Structural framework of the Chile margin at the Chile Ridge collision zone. In: Behrmann JH et al. (eds) Proc ODP Init Rep 141: 11–21

  • Bangs NLB, Sawyer DS, Golovchenko X (1995) The cause of the bottom simulating reflector in the vicinity of the Chile Triple Junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP, Sci Res 141. Ocean Drilling Program, College Station

  • Behrmann JH, Brown K, Moore JC, Mascle A, Taylor E, Andreieff P, Alvarez F, Barnes R, Beck C, Blanc G, Clark M, Dolan J, Gieskes J, Fisher A, Hounslow M, McLellan P, Moran K, Ogawa Y, Sakai T, Schoonmaker J, Vrolijk P, Wilkens R, Williams C (1988) Evolution of structures and fabrics in the Barbados Accretionary Prism. Insights from Leg 110 of the Ocean Drilling Program. J Struct Geol 10: 577–591

    Google Scholar 

  • Behrmann JH, Lewis SD, Musgrave R, Bangs N, Boden P, Brown K, Collombat H, Didenko AN, Didyk BM, Froelich PN, Golovchenko X, Forsythe R, Kurnosov V, Lindsley-Griffin N, Marsaglia K, Osozawa S, Prior D, Sawyer D, Scholl D, Spiegler D, Strand K, Takahashi K, Torres M, Vega-Faundez M, Vergara H, Waseda A (1992) Chile Triple Junction. Proc ODP Init Rep (Pt A) 141: 1–708

    Google Scholar 

  • Behrmann JH, Lewis SD, Musgrave R, Bangs N, Boden P, Brown K, Collombat H, Didenko AN, Didyk BM, Froelich PN, Golovchenko X, Forsythe R, Kurnosov V, Lindsley-Griffin N, Marsaglia K, Osozawa S, Prior D, Sawyer D, Scholl D, Spiegler D, Strand K, Takahashi K, Torres M, Vega-Faundez M, Vergara H, Waseda A (1993) Subduktion eines aktiven ozeanischen Spreizungsrükkens vor der Küste von Südchile. Geowissenschaften 11: 288–292

    Google Scholar 

  • Boersma A (1984) Handbook of Common Tertiary Uvigerina. Microclimates Press, Stony Point

  • Boillot G, Girardeau J, Kornprobst J (1988) Rifting of the Galicia margin: crustal thinning and emplacement of mantle rocks in the seafloor. In: Boillot G, Winterer E et al. (eds) Proc ODP Sci Res 103: 741–755

  • Bourgois J, Lagabrielle Y, De Wever P, Suess E (1993) Tectonic history of the northern Peru convergent margin during the past 400 ka. Geology 21: 531–534

    Google Scholar 

  • Brown KM, Westbrook GK (1987) The tectonic fabric of the Barbados Ridge accretionary complex. Mar Petrol Geol 4: 71–81

    Google Scholar 

  • Brown KM, Mascle A, Behrmann JH (1990) Mechanisms of accretion and subsequent thickening in the Barbados Ridge accretionary complex: balanced cross sections across the toe of the wedge. Proc ODP Sci Res 110: 209–227

    Google Scholar 

  • Byerly GR, Melson WG, Vogt PR (1976) Rhyodacites, andesites, ferrobasalts and ocean tholeftes from the Galapagos Spreading Center. Earth Planet Sci Lett 30: 215–221

    Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res 91: 471–496

    Google Scholar 

  • Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile Ridge and Chile Trench: geophysical and geothermal evidence. J Geophys Res 92: 495–520

    Google Scholar 

  • Casey JF, Dewey JF (1984) Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres-implications for ophiolitic geology and obduction. In: Gass IG, Lippard SJ, Shelton AW (eds) Ophiolites and Oceanic Lithosphere. Spec Publ Geol Soc London 13: 269–290

  • Chase CG (1978) Plate kinematics: the Americas, East Africa, and the rest of the world. Earth Planet Sci Lett 37: 355–368

    Google Scholar 

  • Cloos M (1993) Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Bull Geol Soc Am 105: 715–737

    Google Scholar 

  • Cowan D (1985) Structural styles in Mesozoic and Cenozoic melanges in the western Cordillera of North America. Geol Soc Am Bull 96: 451–462

    Google Scholar 

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88: 1153–1172

    Google Scholar 

  • DeLong SE, Fox PJ (1977) Geological consequences of ridge subduction. In: Talwani M, Pitman WC III (eds) Island Arcs, Deep Sea Trenches and Back Arc Basins. Maurice Ewing Ser 1: 221–228

  • DeLong SE, Schwarz WM, Anderson RN (1979) Thermal effects of ridge subduction. Earth Planet Sci Lett 44: 239–246

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94: 222–235

    Google Scholar 

  • Diemer JA, Forsythe R (1995) Grain size variations within slope facies recovered from the Chile Margin Triple Junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP, Sci Results 141. Ocean Drilling Program, College Station

  • Elthon D (1991) Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone. Nature 354: 140–143

    Google Scholar 

  • Forsythe R, Prior D (1992) Cenozoic continental geology of South America and its relations to the evolution of the Chile Triple Junction. In: Behrmann JH et al. (eds) Proc ODP Init Rep 141: 23–31

  • Forsythe R, Nelson, EP (1985) Geological manifestations of ridge collision: evidence from the Golfo de Penas-Taitao Basin, Southern Chile. Tectonics 4: 477–495

    Google Scholar 

  • Forsythe R, Elthon D, Bender J, Meen J (1995a) Geochemical observations for glass and volcanic rocks recovered from Site 862: implications for the origin of the Taitao Ridge, Chile Triple Junction region. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program, College Station

  • Forsythe R, Drake R, Olsson RK (1995 b) 40Ar/39Ar and additional paleontologic age constraints for Site 862; Taitao Ridge. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP, Sci Res 141. Ocean Drilling Program, College Station

  • Fryer P, Ambos EL, Hussong DM (1985) Origin and emplacement of Mariana forearc seamounts. Geology 13: 774–777

    Google Scholar 

  • Grow JA, Atwater T (1970) Mid-Tertiary transition in the Aleutian arc. Geol Soc Am Bull 81: 3715–3722

    Google Scholar 

  • Herron EM, Bruhn R, Winslow M, Chuaqui L (1977) Post Miocene tectonics of the margin of southern Chile. In: Talwani M, Pitman III WC (eds) Island Arcs, Deep Sea Trenches and Back-arc Basins. Maurice Ewing Ser 1: 273–283

  • Herron EM, Cande SC, Hall BR (1981) An active spreading centre collides with a subduction zone: a geophysical investigation of the Chile margin triple junction. Geol Soc Am Mem 154: 683–701

    Google Scholar 

  • Hervé F, Nelson E, Suarez M, Kawashita K (1981) New isotopic ages and their bearing on timing of events in the Cordillera Darwin, southermost Chilean Andes. Earth Planet Sci Lett 16: 256–265

    Google Scholar 

  • Hervé F, Godoy E, Parada M, Ramos V, Rapela C, Mpodozis C, Davidson J (1987) A general view of the Chilean-Argentine Andes, with emphasis on their early history. Am Geophys Union, Geodyn Ser 18: 97–113

    Google Scholar 

  • Hibbard JP, Karig DE (1990a) Alternative model for the early Miocene evolution of the southwest Japan margin. Geology 18: 170–174

    Google Scholar 

  • Hibbard JP, Karig DE (1990b) Structural and magmatic responses to spreading ridge subduction: an example from southwest Japan. Tectonics 9: 207–230

    Google Scholar 

  • Hilde TWC (1983) Sediment subduction vs. accretion around the Pacific. Tectonophysics 99: 381–397

    Google Scholar 

  • Honza E, Miyazaki T, Lock J (1989) Subduction erosion and accretion in the Solomon Sea region. Tectonophysics 160: 49–62

    Google Scholar 

  • Howell DG (1980) Mesozoic accretion of exotic terranes along the new Zealand segment of Gondwanaland. Geology 8: 487–491

    Google Scholar 

  • Hsü KJ (1968) Principles of melanges and their bearing on the Franciscan-Knoxville paradox. Geol Soc Am Bull 79:1063–1074

    Google Scholar 

  • Hsü KJ (1971) Franciscan mélanges as a model for eugeosynclinal sedimentation and underthrusting tectonics. J Geophys Res 76: 1162–1170

    Google Scholar 

  • Ingle JC, Keller G, Kolpack RL (1980) Benthic foraminifral biofacies, sediments and water masses of the southern Peru — Chile Trench ara, southeastern Pacific Ocean. Micropaleontology 26: 113–150

    Google Scholar 

  • Karig DE (1982) Initiation of subduction zones: implications for arc evolution and ophiolite development. In: Leggett JK (ed) Trench-Forearc Geology. Spec Publ Geol Soc London 10: 563–576

  • Keading M, Forsythe RD, Nelson EP (1990) Geochemistry of the Taitao ophiolite and near-trench intrusions from the Chile Margin Triple Junction. J South Am Earth Sci 3: 161–177

    Google Scholar 

  • Kemp AES, Lindsley-Griffin N (1990) Variation in structural style within Peruvian forearc sediments. In: Suess E, von Huene R et al. (eds) Proc ODP Sci Res 112: 17–31, Ocean Drilling Program, College Station

  • Knipper A, Ricou LE, Dercourt J (1986) Ophiolites as indicators of the geodynamic evolution of the Tethyan ocean. Tectonophysics 123: 213–240

    Google Scholar 

  • Kurnosov V, Murdmaa I, Chamov N, Chudaev O, Eroshchev-Shak V, Shterenberg L (1995 a) Mineralogy of sediments from the Chile Triple Junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program, College Station

  • Kurnosov V, Forsythe RD, Lindsley-Griffin N, Zolotarev B, Kashinzev G, Eroshchev-Shak V, Artamonov A, Chudaev O (1995 b) Comparison of the alteration and petrology of the Taitao Ridge with the Taitao Ophiolite. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program, College Station

  • Langmuir CH, Bender JF, Batiza R (1986) Petrological and tectonic segmentation of the East Pacific Rise, 5°30′–14°30′ N. Nature 322: 422–429

    Google Scholar 

  • Lewis SD, Ladd JW Bruhs TR (1988) Structural development of an accretionary prism by thrust and strike-slip faulting: Shumagin region, Aleutian trench. Geol Soc Am Bull 100: 767–782

    Google Scholar 

  • McIntosh K, Silver E, Shipley T (1993) Evidence and mechanisms for forearc extension at the accretionary Costa Rica convergent margin. Tectonics 12: 1380–1392

    Google Scholar 

  • Marshak S, Karig DE (1977) Triple junctions as causes of anomalous near trench igneous activity between the trench and the volcanic arc. Geology 5: 233–236

    Google Scholar 

  • Marsaglia KM, Torres XV, Padilla 1, Rimkus KC (1995) Provenance of Pleistocene and Pliocene sand and sandstone, ODP Leg 141, Chile margin. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res. 141. Ocean Drilling Program, College Station

  • Mascle A, Moore JC, Taylor E, Andreieff P, Alvarez F, Barnes R, Beck C, Behrmann J, Blanc G, Brown K, Clark M, Dolan J, Gieskes J, Fisher A, Hounslow M, McLellan P, Moran K, Ogawa Y, Sakai T, Schoonmaker J, Vrolijk P, Wilkens R, Williams C (1988) Barbados Ridge. Proc ODP Init Rep 110: 1–603

    Google Scholar 

  • McKenzie DP, Morgan WJ (1969) Evolution of triple junctions. Nature 224: 125–133

    Google Scholar 

  • Moore JC (1989) Tectonics and hydrogeology of accretionary prisms: role of the décollement zone. J Struct Geol 11: 95–106

    Google Scholar 

  • Moore JC, Lundberg N (1986) Macroscopic structural features in DSDP cores from forearc regions. Structural fabrics in DSDP cores from forearcs. Geol Soc Am Mem 166: 13–44

    Google Scholar 

  • Moore JC, Diebold J, Fisher MA, Sample J, Brocher T, Talwani M, Ewing J, von Huene R, Rowe C, Stone D et al. (1991) EDGE deep seismic reflection transect of the eastern Aleutian arc-trench layered lower crust reveals underplating and continental growth. Geology 19: 420–424

    Google Scholar 

  • Mpodozis C, Herve M, Nasi C, Soffia JM, Forsythe RD, Nelson EP (1985) El magmatismo plioceno de Peninsula Tres Montes y su relacion con la evolucion del Punto Triple de Chile Austral. Rev Geol Chile 25–26: 13–28

    Google Scholar 

  • Needham DT (1993) The structure of the western part of the Southern Uplands of Scotland. J Geol Soc London 150: 341–354

    Google Scholar 

  • Needham DT, Knipe RJ (1986) Accretion- and collision-related deformation in the Southern Uplands accretionary wedge, southwestern Scotland. Geology 14: 303–306

    Google Scholar 

  • ODP Leg 146 Scientific Party (1993) ODP Leg 146 examines fluid flow in Cascadia margin. EOS, Trans Am Geophys Union 74(31): 345–347

    Google Scholar 

  • Ogawa Y, Naka J (1984) Emplacement of ophiolitic rocks in forearc areas: examples from central Japan and Izu-Mariana-Yap island are system. In: Gass IG, Lippard SJ, Shelton AW (eds) Ophiolites and Ocean Lithosphere. Spec Publ Geol Soc London 13: 291–301

  • Pankhurst RJ, Herve F, Rojas L, Cembrano J (1992) Magmatism and tectonics in continental Chiloé, Chile (42°–42°30′ S). Tectonophysics 205: 283–294

    Google Scholar 

  • Perfit MR, Fornari DJ (1983) Geochemical studies of abyssal lavas recovered by DSRV Alwin from eastern Galapagos Rift, Inca Transform, and Ecuador Rift; 3, trace element abundances and petrogenesis. J Geophys Res 88: 10551–10572

    Google Scholar 

  • Pilger RH Jr (1978) A method for finite plate reconstructions, with applications to Pacific-Nazca plate evolution. Geophys Res Lett 5: 469–472

    Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull 97:1037–1053

    Google Scholar 

  • Platt JP (1988) The mechanics of frontal imbrication: a first-order analysis. Geol Rundsch 77: 577–589

    Google Scholar 

  • Platt JP, Leggett JK, Young J, Raza H., Alam S (1985) Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology 13: 507–511

    Google Scholar 

  • Resig JM (1990) Benthic foraminiferal stratigraphy and paleoenvironments off Peru, Leg 112. In: Suess E, von Huene R et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program. College Station: 263–296

  • Schönfeld J, Spiegler D (1995) Benthic foraminiferal biostratigraphy of ODP Site 861 (Chile Triple Junction, southeastern Pacific). In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program, College Station

  • Scientific Party (1980) The Japan Trench Transect. Init Rep DSDP 56/57: 1–1417

    Google Scholar 

  • Scholl DW, von Huene R, Vallier TL, Howell DG (1980) Sedimentary masses and concepts about tectonic processes at underthrust oceanic margins. Geology 8: 564–568

    Google Scholar 

  • Seely DR (1979) The evolution of structural highs bordering major forearc basins. Am Assoc Petrol Bull 29: 245–260

    Google Scholar 

  • Spiegler D, Müller C, Locker S, Schonfeld J (1995) Biostratigraphic synthesis off Southern Chile, ODP Leg 141. In: Lewis SD, Behrmann JH, Musgrave RJ et al., Proc ODP, Sci Results 141, College Station, TX (Ocean Drilling Program)

  • Steinmann G (1906) Geologische Beobachtungen in den Alpen II. Die Schardt'sche Überfaltungstheorie und die geologische Bedeutung der opiolitischen Massengesteine. Beitr Naturforsch Gesellschaft Freiburg im Breisgau 16: 1–49

    Google Scholar 

  • Strand K (1995) SEM microstructural analysis of a volcanogenic sediment component in a trench-slope basin of the Chile Margin. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program, College Station

  • Strand K, Marsaglia K, Forsythe R, Kurnosov V, Vergara H (1995) Outer margin depositional system near the Chile Margin Triple Junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Res 141. Ocean Drilling Program, College Station

  • Suess E, von Huene R, Emeis K, Bourgois J, Castaneda JCC, De Wever P, Eglinton G, Garrison R, Greenberg M, Herrera Paz E, Hill P, Ibaraki M, Kastner M, Kemp AES, Kvenvolden K, Langridge R, Lindsley-Griffin N, Marsters J, Martini E, McCabe R, Ocola L, Resig J, Sanchez Fernandez AW, Schrader HJ, Thornburg T, Wefer G, Yamano M (1988) Proc ODP Init Rep (Pt A) 112: 1–1015

    Google Scholar 

  • Taira A, Hill 1, Firth JV et al. (1991) Proc ODP Init Rep 131. Ocean Drilling Program, College Station, pp 1–434

  • Thorkelson DJ, Taylor DJ (1989) Cordilleran slab windows. Geology 17: 833–836

    Google Scholar 

  • Thornburg TM, Kulm LD, Hussong DM (1990) Submarine-fan development in the southern Chile Trench: a dynamic interplay of tectonics and sedimentation. Geol Soc Am Bull 102: 1658–1680

    Google Scholar 

  • Thy P, Moores EM (1988) Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics 147: 221–246

    Google Scholar 

  • Trommsdorff V, Piccardo GB, Monstrasio A (1993) From magmatism through metamorphism to sea floor emplacement of subcontinental Adria lithosphere during pre-Alpine rifting (Malenco, Italy). Schweiz Mineral Petrol Mitt 73: 191–203

    Google Scholar 

  • Underwood MB, Bachman SB (1984) Sedimentary facies associations within subduction complexes. In: Leggett JK (ed) Trench—Forearc Geology. Spec Publ Geol Soc London 10: 537–550

  • Uyeda S, Miyashiro A (1974) Plate tectonics and the Japanese Islands: a synthesis. Geol Soc Am Bull 85: 1159–1170

    Google Scholar 

  • van Morkhoven FPCM, Berggren WA, Edwards AS (1986) Cenozoic cosmopolitan deep-water benthic foraminifera. Bull Cent Rech Explor-Prod Elf-Aquitaine 11: 1–421

    Google Scholar 

  • von Huene R, Culotta R (1989) Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160: 75–90

    Google Scholar 

  • von Huene R, Lallemand S (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol Soc Am Bull 102: 704–720

    Article  Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29: 279–316

    Google Scholar 

  • von Huene R, Scholl DW (1993) The return of sialic material to the mantle indicated by terrigenous material subducted at convergent margins. Tectonophysics 219: 163–175

    Google Scholar 

  • von Huene R, Kulm LD, Miller J (1985a) Structure of the frontal point of the Andean convergent margin. J Geophys Res 90: 5429 -5442

    Google Scholar 

  • von Huene R, Aubouin J, Arnott RJ, Baltuck M, Bourgois J, Helm R, Ogawa Y, Kvenvolden KA, McDonald TJ, Taylor E, McDougall K, Filewicz M, Winsborough B, Lienert B (1985b) Middle America Trench. Init Rep DSDP 67: 1–967

    Google Scholar 

  • von Huene, Bourgois J, Miller J, Pautot G (1989). A large tsunamogenic landslide and debris flow along thew Peru trench. J Geophys Res 94: 1703–1714

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrmann, J.H., Lewis, S.D. & Cande, S.C. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program. Geol Rundsch 83, 832–852 (1994). https://doi.org/10.1007/BF00251080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251080

Key words

Navigation