Skip to main content
Log in

Admissibility criteria for propagating phase boundaries in a van der Waals fluid

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lax, P., Shock waves and entropy, in Contributions to Nonlinear Functional Analysis. 603–634, E. Zarantonello, editor, New York, London: Academic Press 1971.

    Google Scholar 

  2. Lax, P., Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS Regional Conference Series in Applied Mathematics. Philadelphia: SIAM Publications 1973.

    Google Scholar 

  3. James, R. D., The propagation of phase boundaries in elastic bars. Arch. Rational Mech. Anal. 73, 125–158 (1980).

    Google Scholar 

  4. Courant, R., & K. O. Friedrichs, Supersonic Flow and Shock Waves. New York: John Wiley 1948.

    Google Scholar 

  5. Lord Rayleigh, Aerial plane waves of finite amplitude. Proc. Royal Society of London, Series A, 84, 247–284 (1910).

    Google Scholar 

  6. Wendroff, B., The Riemann problem for materials with nonconvex equations of state. J. Mathematical Analysis and Applications 38, 454–466 (1972).

    Google Scholar 

  7. Dafermos, C. M., The entropy rate admissibility criterion in thermoelasticity, Rendiconti della Classe di Scienze fisiche, matematiche e naturali, Accademi Nazionale dei Lincei, Serie VII, LVII, (1974), 113–119.

    Google Scholar 

  8. Pippard, A. B., Elements of Classical Thermodynamics. Cambridge: Cambridge University Press 1964.

    Google Scholar 

  9. Sommerfeld, A., Thermodynamics and statistical mechanics. New York and London: Academic Press 1964.

    Google Scholar 

  10. Korteweg, D. J., Sur la forme que prennent les equations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densite, Archives Neerlandaises des Sciences exactes and Naturelles, Series II, 6, 1–24 (1901).

    Google Scholar 

  11. Truesdell, C. A., & W. Noll, The non-linear field theories of mechanics, Vol. III/3 of the Encyclopedia of Physics, S. Flugge, editor. Heidelberg, New York: Springer 1965.

    Google Scholar 

  12. Serrin, J., Phase transitions and interfacial layers for van der Waals fluids, Proc. of SAFA IV Conference, Recent Methods in Nonlinear Analysis and Applications, Naples, March 21–28, 1980, A. Canfora, S. Rionero, C. Sbordone, C. Trombetti, editors.

  13. Bongiorno, V., Scriven, L. E., & H. T. Davis, Molecular theory of fluid interfaces. Journal of Colloid and Interface Science 57, 462–475 (1976).

    Google Scholar 

  14. Hale, J. K., Ordinary differential equations. Huntington, NY: Krieger Publishing Co. 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Serrin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slemrod, M. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81, 301–315 (1983). https://doi.org/10.1007/BF00250857

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250857

Keywords

Navigation