Skip to main content
Log in

Interaction of galena with hydrosulphide ions under controlled potentials

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The surface species produced by the anodic oxidation of hydrosulphide ions at galena surfaces have been determined by X-ray photoelectron spectroscopy. Components in the S(2p) spectrum appeared at binding energies typical of sulphur atoms in an oligosulphide. The relative intensities of these components suggested that lead oligosulphides with sulphur chain lengths of up to S4 (or S8 if a chelate) had been formed on the mineral surface. No evidence was found for the deposition of elemental sulphur. The oligosulphide is associated with a dispersed layer of lead sulphide formed by interaction of oxidized lead species and HS. Investigations were also carried out on the surface oxidation of galena on exposure to air. Previous findings that the formation of lead hydroxide becomes evident from a shifted component in the Pb(4f) spectrum without any new sulphur environment being apparent from the S(2p) spectrum were confirmed. This behaviour is ascribed to diffusion of lead atoms from the bulk to maintain only a small metal deficiency in a lead-deficient sulphide layer formed concomitantly with lead hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Marabini and G. Rinelli, in ‘Advances in Mineral Processing, a Half-Century of Progress in Application of Theory and Practice’ (edited by P. Somasundaran), AIME, Littleton CO (1986) pp. 269–288.

    Google Scholar 

  2. R. D. Crozier, ‘Flotation: Theory, Reagents and Ore Testing’, Pergamon Press, Oxford (1992) 356 pp.

    Google Scholar 

  3. M. H. Jones and J. T. Woodcock, Proc. Australas. Inst. Min. Metall. 266 (1978) 11.

    CAS  Google Scholar 

  4. Idem, Int. J. Miner. Process. 6 (1979) 17.

    Article  CAS  Google Scholar 

  5. V. I. Revnivtsev, G. N. Mashevsky, A. M. Kokorin, O. V. Laubgan, T. O. Nichiporenko, M. L. Khanin and G. I. Shorsher, in ‘Proc. XVIIth International Mineral Processing Congress, Dresden, Germany’ (1991) pp. 295–305.

  6. G. W. Walker, C. P. Walters and P. E. Richardson, in ‘Proc. Int. Symp. Electrochemistry in Mineral and Metal Processing’ (edited by P. E. Richardson, S. Srinivasan and R. Woods), Electrochem. Soc, Pennington, NJ, 84–10 (1984) pp. 202–218.

    Google Scholar 

  7. G. W. Heyes and W. J. Trahar, in ‘Proc. Int. Symp. Electrochemistry in Mineral and Metal Processing’ (edited by P. E. Richardson, S. Srinivasan and R. Woods), Electrochem. Soc, Pennington, NJ, 84–10 (1984) pp. 219–232.

    Google Scholar 

  8. W. J. Trahar, in ‘Principles of Flotation: The Wark Symposium’ (edited by M. H. Jones and J. T. Woodcock), Australasian IMM, Melbourne (1984) pp. 117–135.

    Google Scholar 

  9. R. Woods, D. C. Constable and I. C. Hamilton, Int. J. Miner. Process. 27 (1989) 309.

    Article  CAS  Google Scholar 

  10. A. N. Buckley, I. C. Hamilton and R. Woods, J. Electroanal. Chem. 216 (1987) 213.

    Article  CAS  Google Scholar 

  11. A. N. Buckley, R. Woods and H. J. Wouterlood, Aust. J. Chem. 41 (1988) 1003.

    CAS  Google Scholar 

  12. J. J. McCarron, G. W. Walker and A. N. Buckley, Int. J. Miner. Process. 30 (1990) 1.

    Article  CAS  Google Scholar 

  13. A. N. Buckley, R. Woods and H. J. Wouterlood, Int. J. Miner. Process. 26 (1989) 29.

    Article  CAS  Google Scholar 

  14. J. Gebhardt, J. J. McCarron, P. E. Richardson and A. N. Buckley, Hydrometallurgy 17 (1986) 27.

    Article  CAS  Google Scholar 

  15. I. C. Hamilton and R. Woods, J. Appl. Electrochem. 13 (1983) 783.

    Article  CAS  Google Scholar 

  16. X. Gao, Y. Zhang and M. J. Weaver, Langmuir 8 (1992) 668.

    Article  CAS  Google Scholar 

  17. X. Gao, Y. Zhang and M. J. Weaver, J. Phys. Chem. 96 (1992) 4156.

    CAS  Google Scholar 

  18. A. N. Buckley and R. Woods, Aust. J. Chem. 37 (1984) 2403.

    CAS  Google Scholar 

  19. A. N. Buckley and G. W. Walker, in ‘Proc. XVI Int. Miner. Process. Congress’(edited by K. S. E. Forssberg), Elsevier, Amsterdam (1988) pp. 589–599.

    Google Scholar 

  20. A. N. Buckley and R. Woods, Appl. Surf. Sci. 17 (1984) 401.

    CAS  Google Scholar 

  21. G. W. Walker, P. E. Richardson and A. N. Buckley, Int. J. Miner. Process. 25 (1989) 153.

    Article  CAS  Google Scholar 

  22. A. N. Buckley and K. W. Riley, Surf. Interface Anal. 17 (1991) 655.

    CAS  Google Scholar 

  23. A. N. Buckley and R. Woods, Appl. Surf. Sci. 22/23 (1985) 280.

    Article  Google Scholar 

  24. 20 (1985) 472.

    Article  CAS  Google Scholar 

  25. A. N. Buckley, I. C. Hamilton and R. Woods, in ‘Developments in Mineral Processing: Vol. 6, Flotation of Sulphide Minerals’ (edited by K. S. E. Forssberg), Elsevier, Amsterdam (1985) pp. 41–60.

    Google Scholar 

  26. A. N. Buckley and R. Woods, Int. J. Miner. Process. 28 (1990) 301.

    Article  CAS  Google Scholar 

  27. Idem, Colloids Surf. 53 (1991) 33.

    Article  CAS  Google Scholar 

  28. R. G. Bates, ‘Determination of pH, Theory and Practice’, Wiley, New York (1964).

    Google Scholar 

  29. K. Laajalehto, R. StC. Smart, J. Ralston and E. Suoninen, Appl. Surf. Sci. 64 (1993) 29.

    Article  CAS  Google Scholar 

  30. J. R. Gardner and R. Woods, J. Electroanal. Chem. 100 (1979) 447.

    Article  CAS  Google Scholar 

  31. R. Szargan, S. Karthe and E. Suoninen, Appl. Surf. Sci. 55 (1992) 227.

    Article  CAS  Google Scholar 

  32. M. M. Hyland and G. M. Bancroft, Geochim. et Cosmochim. Acta 53 (1989) 367.

    CAS  Google Scholar 

  33. J. R. Mycroft, G. M. Bancroft, N. S. McIntyre, J. W. Lorimer and I. R. Hill,. J. Electroanal. Chem. 292 (1990) 139.

    Article  CAS  Google Scholar 

  34. S. C. Termes, A. N. Buckley and R. D. Gillard, Inorg. Chim. Acta 126 (1987) 79.

    Article  CAS  Google Scholar 

  35. A. N. Buckley, H. J. Wouterlood, P. S. Cartwright and R. D. Gillard, ibid. 143 (1988) 77.

    Article  CAS  Google Scholar 

  36. I. C. Hamilton and R. Woods, J. Appl. Electrochem. 13 (1983) 783.

    Article  CAS  Google Scholar 

  37. R. Woods, J. Phys. Chem. 75 (1971) 354.

    Article  CAS  Google Scholar 

  38. P. E. Richardson and E. E. Maust Jr, in ‘Flotation: A. M. Gaudin Memorial Volume’ (edited by M. C. Fuerstenau), AIME/SME, New York, NY (1976), Vol. 1, pp. 364–392.

    Google Scholar 

  39. M. K. Y. Rao and K. A. Natarajan, Int. J. Miner. Process. 29 (1990) 175.

    CAS  Google Scholar 

  40. Feng Qiming, Xu Si and Chen Jin, in ‘Proc. First Int. Conf. Modern Process Mineral. Min. Process.’, Beijing (1992) pp. 508–512.

  41. P. W. Page and L. B. Hazell, Int. J. Miner. Process. 25 (1989) 87.

    Article  CAS  Google Scholar 

  42. K. Laajalehto, P. Nowak and E. Suoninen, ibid. 37 (1993) 123.

    Article  CAS  Google Scholar 

  43. P. E. Richardson, R.-H. Yoon, R. Woods and A. N. Buckley, ibid., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, A.N., Kravets, I.M., Shchukarev, A.V. et al. Interaction of galena with hydrosulphide ions under controlled potentials. J Appl Electrochem 24, 513–520 (1994). https://doi.org/10.1007/BF00249851

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249851

Keywords

Navigation