Skip to main content
Log in

Effect of Cu2+-ascorbic acid on lipid peroxidation, Mg2+-ATPase activity and spectrin of RBC membrane and reversal by erythropoietin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The effect of erythropoietin (Ep), a glycoprotein hormone, has been studied on lipid peroxidation induced by Cu2+ and ascorbate in vitro, Mg2+ ATPase activity and spectrin of RBC membrane. Our present investigation reveals that Cu2+ and ascorbic acid increases lipid peroxidation of RBC membrane significantly. It has further been observed that under the same experimental condition spectrin, a major cytoskeleton membrane protein, and Mg2+-ATPase activity of RBC membrane decrease significantly. However, exogenous administration of Ep completely restores lipid peroxidation and Mg2+-ATPase activity and partially recovers spectrin of RBC membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross M, Goldwasser E: On the mechanism of erythrocyte induced differentiation IX induced synthesis of 9S ribonucleic acid and of hemoglobin. J Biol Chem 246: 2480–2486, 1971

    Google Scholar 

  2. Stohlman F Jr: Humoral regulation of erythropoiesis XIV: a model for abnormal erythropoiesis in thalassemia. Ann N Y Acad Sci 119: 578–585, 1964

    Google Scholar 

  3. Ward HP: An in vitro assay of erythropoietin. Proc Soc Exp Biol Med 125: 370–374, 1967

    Google Scholar 

  4. Krantz SB, Fried W: In vitro behaviour of stem cells. J Lab Clin Med 72: 157–164, 1968

    Google Scholar 

  5. Ghoshal J, Biswas T, Ghosh A, Datta AG: Effect of erythropoietin on the lipid composition of red blood cell membrane. Biochem Med 32: 1–14, 1984

    Google Scholar 

  6. Chakrabarty M, Ghoshal J, Biswas T, Datta AG: Effect of erythropoietin on membrane lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase of rat RBC. Biochem Med Metab Biol 40: 8–18, 1988

    Google Scholar 

  7. Chiu D, Lubin B, Shohet SB: Peroxidative reactions in red cell biology. Free Radicals in Biology V: 115–160, Academic Press, New York, 1982

    Google Scholar 

  8. Chakrabarty M, Ghoshal J, Biswas T, Datta AG: Effect of erythropoietin on the different ATPases and acetylcholinesterase of rat RBC membrane. Biochem Med Metab Biol 36: 231–238, 1986

    Google Scholar 

  9. Roelofsen B, Van Deenen LLM: Lipid requirement of membrane bound ATPase studies of human erythrocyte ghosts. Eur J Biochem 40: 245–257, 1973

    Google Scholar 

  10. Jain SK, Hochstein P: Polymerization of membrane components in aging red blood cells. Biochem Biophys Res Commun 92: 247–254, 1980

    Google Scholar 

  11. Dodge JT, Mitchelle C, Hanahan D: The preparation of chemical characteristics of hemoglobin free ghosts of human erythrocytes. Arch Biochem Biophys 100: 119–130, 1963

    Google Scholar 

  12. Chan PC, Peller OG, Kesner L: Copper (II) catalyzed lipid peroxidation in liposomes and erythrocyte membranes. Lipids 17 (5): 331–337, 1982

    Google Scholar 

  13. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Google Scholar 

  14. Gutteridge JMC, Halliwell B: The measurement and mechanism of lipid peroxidation in biological systems. TIBS 15: 129–135, 1990

    Google Scholar 

  15. Buege JA, Aust SD: Microsomal lipid peroxidation. Methods in Enzymology 52: 306, 1978

    Google Scholar 

  16. Olawoye TO: Erythrocyte membrane Ca2+-ATPase: Reactivities of human A, AS and S erythrocytes with steroid hormones. Biochem Metab Biol 42 (3): 179–184, 1989

    Google Scholar 

  17. Ronner P, Gazzoth P, Carofoli E: A lipid requirement for the (Ca2+-Mg2+) activated ATPase of erythrocyte membranes. Arch Biochem Biophys 179: 578–583, 1977

    Google Scholar 

  18. Fairbanks G, Steck TL, Wallach DFH: Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617, 1970

    Google Scholar 

  19. Braughler JM, Duncan LA, Robin LC: The involvement of iron in lipid peroxidation. J Biol Chem 261: 10282–10289, 1986

    Google Scholar 

  20. Miller DM, Aust SD: Studies of ascorbate dependent iron-catalyzed lipid peroxidation. Arch Biochem Biophys 271: 113–119, 1989

    Google Scholar 

  21. Pradhan D, Weiser M, Sapanski KL, Frazier D, Kemper S, Williamson P, Schlegel RA: Peroxidation induced perturbation of erythrocyte lipid organisation. Biochim Biophys Acta 1023 (3): 398–404, 1990

    Google Scholar 

  22. Ding AH, Chan PC: Singlet oxygen in copper catalyzed lipid peroxidation in erythrocyte membranes. Lipids 9 (4): 278–283, 1984

    Google Scholar 

  23. Girotti AW, Thomas JP, Jordan JE: Xanthine oxidase catalyzed crosslinking of cell membrane proteins. Arch Biochem Biophys 251: 639–653, 1986

    Google Scholar 

  24. Arduini A, Stern A: Spectrin degradation in intact red blood cells by phenylhydrazine. Biochem Pharmacol 34: 4283–4289, 1985

    Google Scholar 

  25. Arduini A, Chen Z, Stern A: Phenylhydrazine-induced changes in erythrocyte membrane surface lipid packing. Biochim Biophys Acta 862: 65–71, 1986

    Google Scholar 

  26. Deuticke B, Heller KB, Haest CWM: Progressive oxidative membrane damage in erythrocytes after pulse treatment with t-butylhydroperoxide. Biochem Biophys Acta 899: 113–124, 1987

    Google Scholar 

  27. Rosen GM, Barber MJ, Rauckman EJ: Disruption of erythrocyte membrane organization by superoxide. J Biol Chem 258: 2225–2228, 1983

    Google Scholar 

  28. Haest CWM: Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta 694: 331–352, 1982

    Google Scholar 

  29. Tien M, Svengen BA, Aust SD: Superoxide dependent lipid peroxidation. Fed Proc 40: 179–182, 1981

    Google Scholar 

  30. Bloj B, Morero RD, Farias RN, Trucco RE: Membrane lipid fatty acids and regulation of membrane bound enzymes. Biochim Biophys Acta 311: 67–79, 1973

    Google Scholar 

  31. Galo MG, Urates LE, Farias R: Effect of membrane fatty acid composition on the action of thyroid hormones on (Ca2+-Mg2+)-adenosine triphosphatase from rat erythrocytes. J Biol Chem 256: 7113–7114, 1981

    Google Scholar 

  32. de Mendoza D, Moreno H, Massa EM, Morero RD, Farias RN: Thyroid hormone actions and membrane fluidity. Blocking action of thyroxine on triiodothyronine effect. FEBS Lett 84: 199–203, 1977

    Google Scholar 

  33. Hebbel RP, Shalev O, Foker W, Rank BH: Inhibition of erythrocyte Ca Ca2+-ATPase by activated oxygen through thiol and lipid dependent mechanisms. Biochim Biophys Acta 862: 8–16, 1986

    Google Scholar 

  34. Marchesi VT, Palade GE: The localization of Mg2+-Na+-K+-activated adenosine triphosphatase of red cell ghost membrane. J Cell Biol 35: 385–404, 1967

    Google Scholar 

  35. Arduini A, Stern A, Storto S, Belfiglio M, Marcinelli G, Scurti R, Federici G: Effect of oxidative stress on membrane phospholipid and protein organisation in human erythrocytes. Arch Biochem Biophys 273 (1): 112–120, 1989

    Google Scholar 

  36. Kesner L, Kindya RJ, Chan PC: Inhibition of erythrocyte membrane (Na+-K+)-activated ATPase by ozone treated phospholipid. J Biol Chem 254 (8): 2705–2709, 1979

    Google Scholar 

  37. Jain SK, Hochstein P: Membrane alterations in phenylhydrazine induced reticulocytes. Arch Biochem Biophys 201: 683–687, 1980

    Google Scholar 

  38. Kumar A, Gupta CM: Red cell membrane abnormalities in chronic myeloid leukemia. Nature 303: 632–633, 1983

    Google Scholar 

  39. Arduini A, Storto S, Belfiglio M, Scurti S, Mancinelli G, Federici F: Mechanism of spectrin degradation induced by phenylhydrazine in intact human erythrocytes. Biochim Biophys Acta 979: 1–6, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, A., Choudhury, T.D., Basu, M.K. et al. Effect of Cu2+-ascorbic acid on lipid peroxidation, Mg2+-ATPase activity and spectrin of RBC membrane and reversal by erythropoietin. Mol Cell Biochem 118, 23–30 (1992). https://doi.org/10.1007/BF00249691

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249691

Key words

Navigation