Skip to main content
Log in

Energy coupling in Mn2+ oxidation by a marine bacterium

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript


ATP synthesis couple to Mn2+ oxidation was demonstrated with partially or wholly everted membrane vesicles from marine bacterial strain SSW22. The extent of ATP synthesis in these experiments was greater in earlier experiments. Chemiosmosis is the most probable mechanism for energy coupling because 2,4-dinitrophenol at appropriate concentrations stimulated Mn2+ oxidation by intact cells, membrane vesicles or extracts of strains SSW22, S13, and marine pseudomonad 16B. Externally added ADP stimulated Mn2+ oxidation by everted membrane vesicles of strain SSW22. This stimulation was oxygen-dependent. It is explained on the basis of a chemiosmotic model for energy coupling in Mn2+ oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Aleem MIH, Sewell DL (1984) Oxidoreductase systems in Nitrobacter agilis. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. The OhioState University Press, Columbus, OH, pp 185–210

    Google Scholar 

  • Arcuri EJ, Ehrlich HL (1979) Cytochrome involvement in Mn(II) oxidation by two marine bacteria. Appl Environ Microbiol 37: 916–923

    Google Scholar 

  • Beijerinck MW (1913) Oxydation des Mangancarbonates durch Bakterien und Schimmelpilze. Folia Microbiolo Holl Beitr Ges Mikrobiol Delft 2: 123–124

    Google Scholar 

  • Clark TR, Ehrilich HL (1988) Manganese oxidation by cell fractions from a bacterial hydrothermal vent isolate. Abstr Annu Meet Am Soc Microbiol K-152, p 232

  • Ehrilich HL (1963) Bacteriology of manganese nodules. I. Bacterial action on manganese in nodules enrichments. Appl Microbiol 11: 15–19

    Google Scholar 

  • Ehrilich HL (1976) Manganese as an energy source for bacteria. In: Nriagu JO (ed) Environmental biogeochemistry, vol 2, Metal transfenand ecological mass balances. Ann Arbor Sciences Publishers. Ann Arbor, MI, pp 633–644

    Google Scholar 

  • Ehrlich HL (1978) Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol J 1: 65–83

    Google Scholar 

  • Ehrilich HL (1982) Enhanced removal of Mn2+ from seawater by marine sediments and clay minerals in the presence of bacteria. Can J Microbiol 28: 1389–1395

    Google Scholar 

  • Ehrlich HL (1983) Manganese oxidizing bacteria from a hydrothemally active area on the Galapagos Rift. Ecol Bull (Stockholm) 35: 357–366

    Google Scholar 

  • Ehrlich HL (1984) Different forms of bacterial manganese oxidation. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. The Ohio State University Press, Columbus, OH, pp 47–56

    Google Scholar 

  • Graham LA (1987) Biochemistry and electron transport of a manganes-oxidizing bacterium. PhD thesis. Rensselaer Polytechnic Institute, Troy, NY

  • Graham LA Salerno JC, Ehrlich HL (1987) Electron transfer components of manganese oxidizing bacteria. In: Kim CH, Tedeschi H, Diwan JJ Salerno JC (eds) Advances in membrane biochemistry and bioenergetics. Plenum Press, New York, pp 267–272

    Google Scholar 

  • Harold FM (1972) Conservation and transformation of energy by bacterial membranes. Bacteriol Rev 36: 172–230

    Google Scholar 

  • Henry RJ (1965) Clinical chemistry,principles and techniques. Harper and Row, New York

    Google Scholar 

  • Hotchkiss RD (1946) Gramicidin, tyrocidine, and tyrothricin. Adv Enzymol 4: 153–199

    Google Scholar 

  • Jackson DD (1901a) A new species of Crenothrix (C. manganifera). Trans Am Microscop Soc 23–31

  • Jackson DD (1901b) The precipitation of iron, manganese, and aluminum by bacterial action. J Soc Chem Ind 21: 681–684

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Strohl WR, Schmidt TM (1984) Mixotrophy of the colorless sulfideoxidizing, gliding bacteria Beggiatoa and Thiothrix. In: Strohl WR Tuovinen OH (eds) Microbial chemoatotrophy. The Ohio State University Press, Columbus, OH, pp 79–95

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrich, H.L., Salerno, J.C. Energy coupling in Mn2+ oxidation by a marine bacterium. Arch. Microbiol. 154, 12–17 (1990).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Key words