Skip to main content
Log in

Effect of the Urtica dioica agglutinin on germination and cell wall formation of Phycomyces blakesleeanus Burgeff

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The lectin from stinging nettle rhizomes, Urtica dioica agglutinin (UDA), did not affect the evolution of wet and dry weight, protein, nucleic acid, ATP, cAMP and glycerol content during early germination of Phycomyces blakesleeanus spores. However, earlier investigations established a strongly reduced mycelial growth of several phytopathogenic fungi by this small plant lectin. Total uptake and incorporation of radioactive precursors showed no differences between UDA or control hyphae, but UDA significantly altered the distribution patterns of [14C]-glucose incorporated into the walls of Phycomyces blakesleeanus (more label was recovered in the chitin fraction). Moreover, a small but significant stimulation of chitin synthase and a similar inhibition of chitin deacetylase was found in cell wall preparations. These observations could lead to a better understanding of plant-pathogen interrelationships and to a further elucidation of cell wall structure in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GlcNAc:

N-Acetylglucosamine

PDB:

potato dextrose broth

PMM:

Phycomyces minimal medium

UDA:

Urtica dioica agglutinin

TEA:

tri-ethyl-amine

DAB:

1,4-diaminobutanone

References

  • Bartnicki-Garcia S, Lippman E (1972) The bursting tendency of hyphal tips of fungi: presumptive evidence for a delicate balance between wall synthesis and wall lysis in apical growth. J Gen Microbiol 73: 487–500

    Google Scholar 

  • Belmans D, VanLaere A (1988) Effect of ionophores on the ATP-pool and glycerol content in cells of the halotolerant green alga Dunaliella tertiolecta. J Gen Microbiol 134: 2261–2268

    Google Scholar 

  • Broekaert WF, VanParijs J, Allen AK, Peumans WJ (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol Mol Plant Pathol 33: 319–331

    Google Scholar 

  • Broekaert WF, VanParijs J, Leyns F, Joos H, Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245: 1100–1102

    Google Scholar 

  • Calvo-Mendez C, Ruiz-Herrera J (1987) Biosynthesis of chitosan in membrane fractions from Mucor rouxii by the concerted action of chitin synthetase and a particulate deacetylase. Exp Mycol 11: 128–140

    Google Scholar 

  • Cohen E, Casida JE (1990) Insect and fungal synthetase activity: specificity of lectins as enhancers and nucleoside peptides as inhibitors. Pestic Biochem Physiol 37: 249–253

    Google Scholar 

  • Farkas V (1979) Biosynthesis of cell walls of fungi. Microbiol Rev 43: 117–144

    Google Scholar 

  • Furch B (1984) Cell wall constituents of Phycomyces blakesleeanus. 4. Structure of sporangiospore and germ sphere walls. Cytobios 40: 27–33

    Google Scholar 

  • Gamow RI, Herrera JR, Fischer EP (1987) The cell wall of Phycomyces. In: Cerda-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory, New York, pp 223–246

    Google Scholar 

  • Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins, properties, functions, and applications in biology and medicine. Academic Press, New York London, pp 33–247

    Google Scholar 

  • Hilgenberg W, Burke PV, Sandmann G (1987) Metabolic pathways. In: Cerda-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory, New York, pp 155–198

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Martinez JP, Lopez-Ribot JL, Gil ML, Sentandreu R, Ruiz-Herrera J (1990) Inhibition of the yeast-mycelial transition and the phorogenesis of Mucorales by diaminobutanone. Arch Microbiol 151: 10–14

    Google Scholar 

  • Mirelman D, Galun E, Sharon N, Lotan R (1975) Inhibition of fungal growth by wheat germ agglutinin. Nature 256: 414–416

    Google Scholar 

  • Money NP (1990) Measurement of pore size in the hyphal cell wall of Achlya bisexualis. Exp Mycol 14: 234–242

    Google Scholar 

  • Nodet P, Capellano A, Fèvre M (1990) Morphogenetic effects of Congo red on hyphal growth and cell wall development of the fungus Saprolegnia monoica. J Gen Microbiol 136: 303–310

    Google Scholar 

  • Peumans WJ, DeLey M, Broekaert WF (1983) An unusual lectin from stinging nettle (Urtica dioica) rhizomes. FEBS Lett 177: 99–103

    Google Scholar 

  • Rudolph H (1958) Entwicklungsphysiologische Untersuchungen an den Sporangiophoren von Phycomyces blakesleeanus. Biol Zentralbl 77: 385–437

    Google Scholar 

  • Ruiz-Herrera J (1982) Synthesis of chitin microfibrils in vitro. In: Brown RM (ed) Cellulose and other natural polymer systems, Plenum Press, New York, pp 207–223

    Google Scholar 

  • Ruiz-Herrera J, Calvo-Mendez C (1987) Effect of ornithine decarboxylase inhibitors in the germination of sporangiophores of Mucorales. Exp Mycol 11: 287–296

    Google Scholar 

  • Schlumbaum A, Mauch F, Voegeli V, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367

    Google Scholar 

  • Schneider WC (1957) Determination of nucleic acids in tissues by pentose analysis. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol III. Academic Press, New York, pp 680–684

    Google Scholar 

  • Shibuya NS, Goldstein IJ, Shafer JA, Peumans WJ, Broekaert WF (1986) Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin. Arch Biochem Biophys 249: 215–224

    Google Scholar 

  • Umbreit WW, Burris RH, Stauffer JF (1964) Manometric techniques, 4th edn. Burgess Publishing Company, Minneapolis Minnesota

    Google Scholar 

  • VanAssche JA, Carlier AR (1973) The pattern of protein and nucleic acid synthesis in germinating spores of Phycomyces blakesleeanus. Arch Microbiol 93: 129–136

    Google Scholar 

  • VanAssche JA, Carlier AR, Dekeersmaker HI (1972) Trehalase activity in dormant and activated spores of Phycomyces blakesleeanus. Planta 103: 327–333

    Google Scholar 

  • VanLaere AJ (1986) Biochemistry of spore germination in Phycomyces. FEMS Microbiol Rev 32: 189–198

    Google Scholar 

  • VanLaere AJ, Carlier AR (1978) Synthesis and proteolytic activation of chitin synthetase in Phycomyces blakesleeanus Burgeff. Arch Microbiol 116: 181–184

    Google Scholar 

  • VanLaere AJ, Hulsmans E (1987) Water potential, glycerol synthesis, and water content of germinating Phycomyces spores. Arch Microbiol 147: 257–262

    Google Scholar 

  • VanLaere AJ, Carlier AR, VanAssche JA (1977) Cell wall carbohydrates in Phycomyces blakesleeanus Burgeff. Arch Microbiol 112: 303–306

    Google Scholar 

  • VanLaere AJ, Francois A, Overloop K, Verbeke M, VanGerven L (1987a) Relation between germination, trehalose and the status of water in Phycomyces blakesleeanus spores as measured by protein-NMR. J Gen Microbiol 133: 239–245

    Google Scholar 

  • VanLaere AJ, Furch B, VanAssche JA (1987b) The sporangiospore: dormancy and germination. In: Cerda-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory, New York, pp 247–279

    Google Scholar 

  • VanMulders RM, VanLaere AJ (1983) Cyclic AMP, trehalase and germination of Phycomyces blakesleeanus spores. J Gen Microbiol 130: 541–547

    Google Scholar 

  • VanParijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein, a fungistatic protein from rubber tree (Hevea brasiliensis) latex. Planta 183: 258–264

    Google Scholar 

  • VanSchaftingen E, VanLaere AJ (1985) Glycerol formation after the breaking of dormancy of Phycomyces blakesleeanus spores: role of an interconvertible glycerol-3-phosphatase. Eur J Biochem 148: 399–404

    Google Scholar 

  • Walter HJP, Geuns JMC (1987) High speed HPLC analysis of polyamines in plant tissues. Plant Physiol 83: 232–234

    Google Scholar 

  • Wessels JGH (1990) Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, New York, pp 1–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Parijs, J., Joosen, H.M., Peumans, W.J. et al. Effect of the Urtica dioica agglutinin on germination and cell wall formation of Phycomyces blakesleeanus Burgeff. Arch. Microbiol. 158, 19–25 (1992). https://doi.org/10.1007/BF00249060

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249060

Key words

Navigation