Skip to main content
Log in

The menaquinol oxidase of Bacillus subtilis W23

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The quinol oxidase appears to be mainly responsible for the oxidation of bacterial MKH2 in Bacillus subtilis W23 growing with either glucose or succinate. The activity of the enzyme was maximum with dimethylnaphthoquinol, a water-soluble analogue of the bacterial menaquinol. Menadiol or duroquinol were less actively respired, and naphthoquinol was not oxidized at all. After fourtyfold purification the isolated enzyme contained 5.3 μmol cytochrome aa 3 per gram of protein and negligible amounts of cytochrome b and c. The turnover number based on cytochrome aa 3 was about 103 electrons · s-1 at pH 7 and 37°C. The preparation consisted mainly of a M r 57000 and a M r 36000 polypeptide. The N-terminal amino acid sequence of the latter polypeptide differed from that predicted by the qoxA gene of B. subtilis strain 168 (Santana et al. 1992), in that asp-14 predicted by qoxA was missing in the M r 36000 polypeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMN:

2,3-dimethyl-1,4-naphthoquinone

DMNH2 :

2,3-dimethyl-1,4-naphthoquinol

Duroquinol:

2,3,5,6-tetramethyl-1,4-benzoquinol

MK:

menaquinone

MKH2 :

menaquinol

NBH2 :

2,3-dimethoxy-5-methyl-6-(n-nonyl)-1,4-benzoquinol

TMPD:

N,N,N′, N′,-tetramethyl-1,4-phenylenediamine

References

  • Bergsma J, Meihuizen KE, Oeveren W van, Konings WN (1982) Restoration of NADH oxidation with menaquinones and menaquinone analogues in membrane vesicles from the menaquinone-deficient Bacillus subtilis aroD. Eur J Biochem 125: 651–657

    Article  CAS  Google Scholar 

  • Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6: 418–422

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  Google Scholar 

  • Brandt U, Schägger H, Jagow G von (1988) Characterisation of binding of the methoxyacrylate inhibitors to mitochondrial cytochrome c reductase. Eur J Biochem 173: 499–506

    Article  CAS  Google Scholar 

  • Carter K, Gennis RB (1985) Reconstitution of the ubiquinonedependent pyruvate oxidase system of Escherichia coli with the cytochrome o terminal oxidase complex. J Biol Chem 260: 10986–10990

    CAS  PubMed  Google Scholar 

  • Chepuri V, Lemieux L, Au DCT, Gennis RB (1990) The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa 3-type family of cytochrome c oxidases. J Biol Chem 265: 11185–11192

    CAS  PubMed  Google Scholar 

  • Clark WM (1960) Oxidation reduction potentials of organic systems. Williams & Wilkins, Baltimore

    Google Scholar 

  • Ernster L, Danielson L, Ljunggren M (1962) DT Diaphorase I, Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochim Biophys Acta 58: 171–187

    Article  CAS  Google Scholar 

  • Hägerhäll C, Aasa R, Wachenfeldt C von, Hederstedt L (1992) Two hemes in Bacillus subtilis succinate: menaquinone oxidreductase (complex II). Biochemistry 31: 7411–7421

    Article  Google Scholar 

  • James WS, Gibson F, Taroni P, Poole RK (1989) The cytochrome oxidase of Bacillus subtilis: mapping of a gene affecting cytochrome aa 3, and its replacement by cytochrome o in a mutant strain. FEMS Microbiol Lett 58: 277–282

    Article  CAS  Google Scholar 

  • Kadenbach B (1987) Evolution of a regulatory enzyme: cyrochrome c oxidase (complex IV). Curr Top Bioenerg 15: 113–160

    Article  CAS  Google Scholar 

  • Kita K, Konishi K, Anraki Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 585-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259: 3375–3381

    CAS  PubMed  Google Scholar 

  • Kröger A, Innerhofer A (1976) The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69: 497–506

    Article  Google Scholar 

  • Kröger A, Unden G (1985) The function of menaquinone in bacterial electron transport. In: Lenaz G (ed) Coenzyme Q. Wiley, Chichester, pp 285–300

    Google Scholar 

  • Lauraeus M, Haltia T, Saraste M, Wikström M (1991) Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur J Biochem 197: 699–705

    Article  CAS  Google Scholar 

  • Lemma E, Unden G, Kröger A (1990) Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis. Arch Microbiol 155: 62–67

    Article  CAS  Google Scholar 

  • Lemma E, Hägerhäll C, Geisler V, Brandt U, Jagow G von, Kröger A (1991) Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim Biophys Acta 1059: 281–285

    Article  CAS  Google Scholar 

  • Magnusson K, Philips MK, Guest JR, Rutberg L (1986) Nucleotide sequence of the gene for cytochrome b 558 of Bacillus subtilis succinate dehydrogenase complex. J Bacteriol 166: 1067–1071

    Article  CAS  Google Scholar 

  • Meyer TE, Cusanovich MA (1989) Structure, function and distribution of soluble bacterial redox proteins. Biochim Biophys Acta 975: 1–28

    Article  CAS  Google Scholar 

  • Philips MK, Hederstedt L, Hasnain S, Rutberg L, Guest JR (1987) Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol 169: 864–873

    Article  Google Scholar 

  • Santana M, Kunst F, Hullo MF, Rapoport G, Danchin A, Glaser P (1992) Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa 3-600 quinol oxidase. J Biol Chem 267: 10225–10231

    CAS  PubMed  Google Scholar 

  • Saraste M, Metso T, Nakari T, Jalli T, Lauraeus M, Oost J van der (1991) The Bacillus subtilis cytochrome-c oxidase. Eur J Biochem 195: 517–525

    Article  CAS  Google Scholar 

  • Schnorf U (1966) Der Einfluß von Substituenten auf Redoxpotential und Wuchseigenschaften von Chinonen. Doctoral thesis, no. 3871, ETH Zürich

  • Vrij W de, Azzi A, Konings WN (1983) Structural and functional properties of cytochrome c oxidase from Bacillus subtilis W23. Eur J Biochem 131: 97–103

    Article  Google Scholar 

  • Vrij W de, Burg B van den, Konings WN (1987) Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur J Biochem 166: 589–595

    Article  Google Scholar 

  • Wachenfeldt C von, Hederstedt L (1990) Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain. J Biol Chem 265: 13939–13948

    Google Scholar 

  • White PJ (1972) The nutrition of Bacillus megaterium and Bacillus subtilis. J Gen Microbiol 71: 505–514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemma, E., Schägger, H. & Kröger, A. The menaquinol oxidase of Bacillus subtilis W23. Arch. Microbiol. 159, 574–578 (1993). https://doi.org/10.1007/BF00249037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249037

Key words

Navigation