Skip to main content
Log in

Effect of changes in mineral composition and growth temperature on filament length and flagellation in the Archaeon Methanospirillum hungatei

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanospirillum hungatei strains GP1 and JF1 when cultivated at 37°C in JMA medium grew as motile single cells or short chains of cells (typically 10–30 μm long). When M. hungatei was grown in low Ca2+ concentrations or with the divalent cation chelator EDTA, the organism grew as long non-flagellated filaments (up to 900 μm long). The two strains had different thresholds of calcium concentrations for long filament formation (<0.25 mM for GP1 and <0.15 mM for JF1) as well as different minimal Ca2+ requirements for growth. Both strains produced long, almost straight, filaments at Ca2+ concentrations near the minimum required for growth. At suboptimal growth temperatures the organisms still grew as short filaments but no longer possessed flagella. Western blot analysis indicated that flagellin monomer was present in cultures of long non-flagellated filaments and short non-flagellated cultures grown at suboptimal temperatures. The amount of flagellin present appeared to be equal in both non-flagellated and flagellated cultures. When cells were grown as long non-flagellated filaments and switched to growth conditions inducing short, flagellated forms, flagella were first observed at 2.5 h after this switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi T, Yamagata H, Tsukagoshi N, Udaka S (1991) Repression of the cell wall protein gene operon in Bacillus brevis 47 by magnesium and calcium ions. J Bacteriol 173: 4243–4245

    Article  CAS  Google Scholar 

  • Ayusawa D, Yoneda Y, Yamane K, Maruo B (1975) Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant. J Bacteriol 124: 459–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ (1979) Surface arrays on the wall of Sporosarcina ureae. J Bacteriol 139: 1039–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ, Harris BJ and Sprott GD (1987) Septation and filament splitting in Methanospirillum hungatei. Can J Microbiol 33: 725–732

    Article  Google Scholar 

  • Beveridge TJ, Southam G, Jericho MH, Blackford BL (1990) High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J Bacteriol 172: 6589–6595

    Article  CAS  Google Scholar 

  • Beveridge TJ, Sprott GD, Whippey P (1991) Ultrastructure, inferred porosity, and Gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium. J Bacteriol 173: 130–140

    Article  CAS  Google Scholar 

  • Boone DR, Mah RA (1987) Effects of calcium, magnesium, pH, and extent of growth on the morphology of Methanosarcina mazei S-6. Appl Environ Microbiol 53: 1699–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunk CF, Jones KC, James TW (1979) Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 92: 497–500

    Article  CAS  Google Scholar 

  • Faguy DM, Koval SF, Jarrell KF (1992) Correlation between glycosylation of flagellin proteins and sensitivity of flagellar filaments to Triton X-100 in methanogens. FEMS Lett 90: 129–134

    Article  CAS  Google Scholar 

  • Ferry JG, Smith PH, Wolfe RS (1974) Methanospirillum a new genus of methanogenic bacteria and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24: 465–469

    Article  CAS  Google Scholar 

  • Galperin MY, Dibrov PA, Glagolev AN (1982) 519–1 is required for flagellar growth in Escherichia coli. FEBS Lett 143: 319–322

    Article  CAS  Google Scholar 

  • Jarrell KF, Kalmokoff ML (1988) Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34: 557–576

    Article  CAS  Google Scholar 

  • Jarrell KF, Koval SF (1987) Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J Bacteriol 169: 1298–1306

    Article  Google Scholar 

  • Jarrell KF, Colvin JR, Sprott GD (1982) Spontaneous protoplast formation in Methanobacterium bryantii. J Bacteriol 149: 346–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koval SF (1988) Paracrystalline protein surface arrays on bacteria. Can J Microbiol 34: 407–414

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  CAS  Google Scholar 

  • Leive L (1965) Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun 21: 290–296

    Article  CAS  Google Scholar 

  • Mayerhoffer LE, Macario AJL, Conway de Macario E (1992) Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol 174: 309–314

    Article  Google Scholar 

  • McGroarty EJ, Koffler H, Smith RW (1973) Regulation of flagellar morphogenesis by temperature: involvement of the bacterial cell surface in the synthesis of flagellin and the flagellum. J Bacteriol 113: 295–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ott M, Messner P, Hessemann J, Marre R, Hacker J (1991) Temperature-dependent expression of flagella in Legionella. J Gen Microbiol 137: 1955–1961

    Article  CAS  Google Scholar 

  • Patel GB, Roth AF, Berg L van den, Clark DS (1976) Characterization of a strain of Methanospirillum hungatii. Can J Microbiol 22: 1404–1410

    Article  CAS  Google Scholar 

  • Patel GB, Roth LA, Sprott GD (1979) Factors influencing filament length of Methanospirillum hungatii. J Gen Microbiol 112: 411–415

    Article  CAS  Google Scholar 

  • Patel GB, Sprott GD, Humphrey RW, Beveridge TJ (1986) Comparative analyses of the sheath structures of Methanothrix concilii GP6 and Methanospirillum hungatei GP1 and JF1. Can J Microbiol 32: 623–631

    Article  CAS  Google Scholar 

  • Perry RD, Brubaker RR (1987) Transport of Ca2+ by Yersinia pestis. J Bacteriol 169: 4861–4864

    Article  CAS  Google Scholar 

  • Schmidt JE, Macario AJL, Ahring BK, Conway de Macario E (1992) Effect of magnesium on methanogenic subpopulations in a thermophilic acetate-degrading granular consortium. Appl Environ Microbiol 58: 862–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Southam G, Kalmokoff ML, Jarrell KF, Koval SF, Beveridge TJ (1990) Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei. J Bacteriol 172: 3221–3228

    Article  CAS  Google Scholar 

  • Sprott GD, Beveridge TJ, Patel GB, Ferrante G (1986) Sheath disassembly in Methanospirillum hungatei strain GP1. Can J Microbiol 32: 847–854

    Article  CAS  Google Scholar 

  • Sumper M, Herrmann G (1978) Studies on the biosynthesis of bacterio-opsin: demonstration of the existence of protein species structurally related to bacterio-opsin. Eur J Biochem 89: 229–235

    Article  CAS  Google Scholar 

  • Towbin M, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Article  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology isolation, identification, and applications, vol. 1, 2nd edn. Springer, New York Berlin Heidelberg pp 719–767

    Google Scholar 

  • Wieland F, Paul G, Sumper M (1985) Halobacterial flagellins are sulfated glycoproteins. J Biol Chem 260: 15180–15185

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faguy, D.M., Koval, S.F. & Jarrell, K.F. Effect of changes in mineral composition and growth temperature on filament length and flagellation in the Archaeon Methanospirillum hungatei . Arch. Microbiol. 159, 512–520 (1993). https://doi.org/10.1007/BF00249028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249028

Key words

Navigation